68,911 research outputs found

    Deep-sea image processing

    Get PDF
    High-resolution seafloor mapping often requires optical methods of sensing, to confirm interpretations made from sonar data. Optical digital imagery of seafloor sites can now provide very high resolution and also provides additional cues, such as color information for sediments, biota and divers rock types. During the cruise AT11-7 of the Woods Hole Oceanographic Institution (WHOI) vessel R/V Atlantis (February 2004, East Pacific Rise) visual imagery was acquired from three sources: (1) a digital still down-looking camera mounted on the submersible Alvin, (2) observer-operated 1-and 3-chip video cameras with tilt and pan capabilities mounted on the front of Alvin, and (3) a digital still camera on the WHOI TowCam (Fornari, 2003). Imagery from the first source collected on a previous cruise (AT7-13) to the Galapagos Rift at 86°W was successfully processed and mosaicked post-cruise, resulting in a single image covering area of about 2000 sq.m, with the resolution of 3 mm per pixel (Rzhanov et al., 2003). This paper addresses the issues of the optimal acquisition of visual imagery in deep-seaconditions, and requirements for on-board processing. Shipboard processing of digital imagery allows for reviewing collected imagery immediately after the dive, evaluating its importance and optimizing acquisition parameters, and augmenting acquisition of data over specific sites on subsequent dives.Images from the deepsea power and light (DSPL) digital camera offer the best resolution (3.3 Mega pixels) and are taken at an interval of 10 seconds (determined by the strobe\u27s recharge rate). This makes images suitable for mosaicking only when Alvin moves slowly (≪1/4 kt), which is not always possible for time-critical missions. Video cameras provided a source of imagery more suitable for mosaicking, despite its inferiority in resolution. We discuss required pre-processing and imageenhancement techniques and their influence on the interpretation of mosaic content. An algorithm for determination of camera tilt parameters from acquired imagery is proposed and robustness conditions are discussed

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Authentication of Students and Students’ Work in E-Learning : Report for the Development Bid of Academic Year 2010/11

    Get PDF
    Global e-learning market is projected to reach $107.3 billion by 2015 according to a new report by The Global Industry Analyst (Analyst 2010). The popularity and growth of the online programmes within the School of Computer Science obviously is in line with this projection. However, also on the rise are students’ dishonesty and cheating in the open and virtual environment of e-learning courses (Shepherd 2008). Institutions offering e-learning programmes are facing the challenges of deterring and detecting these misbehaviours by introducing security mechanisms to the current e-learning platforms. In particular, authenticating that a registered student indeed takes an online assessment, e.g., an exam or a coursework, is essential for the institutions to give the credit to the correct candidate. Authenticating a student is to ensure that a student is indeed who he says he is. Authenticating a student’s work goes one step further to ensure that an authenticated student indeed does the submitted work himself. This report is to investigate and compare current possible techniques and solutions for authenticating distance learning student and/or their work remotely for the elearning programmes. The report also aims to recommend some solutions that fit with UH StudyNet platform.Submitted Versio

    Emergency TeleOrthoPaedics m-health system for wireless communication links

    Get PDF
    For the first time, a complete wireless and mobile emergency TeleOrthoPaedics system with field trials and expert opinion is presented. The system enables doctors in a remote area to obtain a second opinion from doctors in the hospital using secured wireless telecommunication networks. Doctors can exchange securely medical images and video as well as other important data, and thus perform remote consultations, fast and accurately using a user friendly interface, via a reliable and secure telemedicine system of low cost. The quality of the transmitted compressed (JPEG2000) images was measured using different metrics and doctors opinions. The results have shown that all metrics were within acceptable limits. The performance of the system was evaluated successfully under different wireless communication links based on real data

    2D Reconstruction of Small Intestine's Interior Wall

    Full text link
    Examining and interpreting of a large number of wireless endoscopic images from the gastrointestinal tract is a tiresome task for physicians. A practical solution is to automatically construct a two dimensional representation of the gastrointestinal tract for easy inspection. However, little has been done on wireless endoscopic image stitching, let alone systematic investigation. The proposed new wireless endoscopic image stitching method consists of two main steps to improve the accuracy and efficiency of image registration. First, the keypoints are extracted by Principle Component Analysis and Scale Invariant Feature Transform (PCA-SIFT) algorithm and refined with Maximum Likelihood Estimation SAmple Consensus (MLESAC) outlier removal to find the most reliable keypoints. Second, the optimal transformation parameters obtained from first step are fed to the Normalised Mutual Information (NMI) algorithm as an initial solution. With modified Marquardt-Levenberg search strategy in a multiscale framework, the NMI can find the optimal transformation parameters in the shortest time. The proposed methodology has been tested on two different datasets - one with real wireless endoscopic images and another with images obtained from Micro-Ball (a new wireless cubic endoscopy system with six image sensors). The results have demonstrated the accuracy and robustness of the proposed methodology both visually and quantitatively.Comment: Journal draf
    corecore