3,563 research outputs found

    Mobile Device Background Sensors: Authentication vs Privacy

    Get PDF
    The increasing number of mobile devices in recent years has caused the collection of a large amount of personal information that needs to be protected. To this aim, behavioural biometrics has become very popular. But, what is the discriminative power of mobile behavioural biometrics in real scenarios? With the success of Deep Learning (DL), architectures based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM), have shown improvements compared to traditional machine learning methods. However, these DL architectures still have limitations that need to be addressed. In response, new DL architectures like Transformers have emerged. The question is, can these new Transformers outperform previous biometric approaches? To answers to these questions, this thesis focuses on behavioural biometric authentication with data acquired from mobile background sensors (i.e., accelerometers and gyroscopes). In addition, to the best of our knowledge, this is the first thesis that explores and proposes novel behavioural biometric systems based on Transformers, achieving state-of-the-art results in gait, swipe, and keystroke biometrics. The adoption of biometrics requires a balance between security and privacy. Biometric modalities provide a unique and inherently personal approach for authentication. Nevertheless, biometrics also give rise to concerns regarding the invasion of personal privacy. According to the General Data Protection Regulation (GDPR) introduced by the European Union, personal data such as biometric data are sensitive and must be used and protected properly. This thesis analyses the impact of sensitive data in the performance of biometric systems and proposes a novel unsupervised privacy-preserving approach. The research conducted in this thesis makes significant contributions, including: i) a comprehensive review of the privacy vulnerabilities of mobile device sensors, covering metrics for quantifying privacy in relation to sensitive data, along with protection methods for safeguarding sensitive information; ii) an analysis of authentication systems for behavioural biometrics on mobile devices (i.e., gait, swipe, and keystroke), being the first thesis that explores the potential of Transformers for behavioural biometrics, introducing novel architectures that outperform the state of the art; and iii) a novel privacy-preserving approach for mobile biometric gait verification using unsupervised learning techniques, ensuring the protection of sensitive data during the verification process

    Integrated Generative Adversarial Networks and Deep Convolutional Neural Networks for Image Data Classification A Case Study for COVID-19

    Get PDF
    Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of cutting-edge deep learning for precise image data classification, focusing on overcoming the difficulties brought on by the COVID-19 pandemic. In order to improve the accuracy and robustness of COVID-19 image classification, the study introduces a novel methodology that combines the strength of Deep Convolutional Neural Networks (DCNNs) and Generative Adversarial Networks (GANs). This proposed study helps to mitigate the lack of labelled coronavirus (COVID-19) images, which has been a standard limitation in related research, and improves the model’s ability to distinguish between COVID-19-related patterns and healthy lung images. The study uses a thorough case study and uses a sizable dataset of chest X-ray images covering COVID-19 cases, other respiratory conditions, and healthy lung conditions. The integrated model outperforms conventional DCNN-based techniques in terms of classification accuracy after being trained on this dataset. To address the issues of an unbalanced dataset, GAN will produce synthetic pictures and extract deep features from every image. A thorough understanding of the model’s performance in real-world scenarios is also provided by the study’s meticulous evaluation of the model’s performance using a variety of metrics, including accuracy, precision, recall, and F1-score

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    Enhancing robustness in video recognition models : Sparse adversarial attacks and beyond

    Get PDF
    Recent years have witnessed increasing interest in adversarial attacks on images, while adversarial video attacks have seldom been explored. In this paper, we propose a sparse adversarial attack strategy on videos (DeepSAVA). Our model aims to add a small human-imperceptible perturbation to the key frame of the input video to fool the classifiers. To carry out an effective attack that mirrors real-world scenarios, our algorithm integrates spatial transformation perturbations into the frame. Instead of using the norm to gauge the disparity between the perturbed frame and the original frame, we employ the structural similarity index (SSIM), which has been established as a more suitable metric for quantifying image alterations resulting from spatial perturbations. We employ a unified optimisation framework to combine spatial transformation with additive perturbation, thereby attaining a more potent attack. We design an effective and novel optimisation scheme that alternatively utilises Bayesian Optimisation (BO) to identify the most critical frame in a video and stochastic gradient descent (SGD) based optimisation to produce both additive and spatial-transformed perturbations. Doing so enables DeepSAVA to perform a very sparse attack on videos for maintaining human imperceptibility while still achieving state-of-the-art performance in terms of both attack success rate and adversarial transferability. Furthermore, built upon the strong perturbations produced by DeepSAVA, we design a novel adversarial training framework to improve the robustness of video classification models. Our intensive experiments on various types of deep neural networks and video datasets confirm the superiority of DeepSAVA in terms of attacking performance and efficiency. When compared to the baseline techniques, DeepSAVA exhibits the highest level of performance in generating adversarial videos for three distinct video classifiers. Remarkably, it achieves an impressive fooling rate ranging from 99.5% to 100% for the I3D model, with the perturbation of just a single frame. Additionally, DeepSAVA demonstrates favorable transferability across various time series models. The proposed adversarial training strategy is also empirically demonstrated with better performance on training robust video classifiers compared with the state-of-the-art adversarial training with projected gradient descent (PGD) adversary

    Applications of Deep Learning Models in Financial Forecasting

    Get PDF
    In financial markets, deep learning techniques sparked a revolution, reshaping conventional approaches and amplifying predictive capabilities. This thesis explored the applications of deep learning models to unravel insights and methodologies aimed at advancing financial forecasting. The crux of the research problem lies in the applications of predictive models within financial domains, characterised by high volatility and uncertainty. This thesis investigated the application of advanced deep-learning methodologies in the context of financial forecasting, addressing the challenges posed by the dynamic nature of financial markets. These challenges were tackled by exploring a range of techniques, including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), autoencoders (AEs), and variational autoencoders (VAEs), along with approaches such as encoding financial time series into images. Through analysis, methodologies such as transfer learning, convolutional neural networks, long short-term memory networks, generative modelling, and image encoding of time series data were examined. These methodologies collectively offered a comprehensive toolkit for extracting meaningful insights from financial data. The present work investigated the practicality of a deep learning CNN-LSTM model within the Directional Change framework to predict significant DC events—a task crucial for timely decisionmaking in financial markets. Furthermore, the potential of autoencoders and variational autoencoders to enhance financial forecasting accuracy and remove noise from financial time series data was explored. Leveraging their capacity within financial time series, these models offered promising avenues for improved data representation and subsequent forecasting. To further contribute to financial prediction capabilities, a deep multi-model was developed that harnessed the power of pre-trained computer vision models. This innovative approach aimed to predict the VVIX, utilising the cross-disciplinary synergy between computer vision and financial forecasting. By integrating knowledge from these domains, novel insights into the prediction of market volatility were provided

    An introduction to double stain normalization technique for brain tumour histopathological images

    Get PDF
    Stain normalization is an image pre-processing method extensively used to standardize multiple variances of staining intensity in histopathology image analysis. Staining variations may occur for several reasons, such as unstandardized protocols while preparing the specimens, using dyes from different manufacturers, and varying parameters set while capturing the digital images. In this study, a double stain normalization technique based on immunohistochemical staining is developed to improve the performance of the conventional Reinhard’s algorithm. The proposed approach began with preparing a target image by applying the contrast-limited adaptive histogram equalization (CLAHE) technique to the targeted cells. Later, the colour distribution of the input image will be matched to the colour distribution of the target image through the linear transformation process. In this study, the power-law transformation was applied to address the over-enhancement and contrast degradation issues in the conventional method. Five quality metrics comprised of entropy, tenengrad criterion (TEN), mean square error (MSE), structural similarity index (SSIM) and correlation coefficient were used to measure the performance of the proposed system. The experimental results demonstrate that the proposed method outperformed all conventional techniques. The proposed method achieved the highest average values of 5.59, 3854.11 and 94.65 for entropy, TEN, and MSE analyses

    Deep saliency detection-based pedestrian detection with multispectral multi-scale features fusion network

    Get PDF
    In recent years, there has been increased interest in multispectral pedestrian detection using visible and infrared image pairs. This is due to the complementary visual information provided by these modalities, which enhances the robustness and reliability of pedestrian detection systems. However, current research in multispectral pedestrian detection faces the challenge of effectively integrating different modalities to reduce miss rates in the system. This article presents an improved method for multispectral pedestrian detection. The method utilises a saliency detection technique to modify the infrared image and obtain an infrared-enhanced map with clear pedestrian features. Subsequently, a multiscale image features fusion network is designed to efficiently fuse visible and IR-enhanced maps. Finally, the fusion network is supervised by three loss functions for illumination perception, light intensity, and texture information in conjunction with the light perception sub-network. The experimental results demonstrate that the proposed method improves the logarithmic mean miss rate for the three main subgroups (all day, day and night) to 3.12%, 3.06%, and 4.13% respectively, at “reasonable” settings. This is an improvement over the traditional method, which achieved rates of 3.11%, 2.77%, and 2.56% respectively, thus demonstrating the effectiveness of the proposed method

    Lip2Speech : lightweight multi-speaker speech reconstruction with Gabor features

    Get PDF
    In environments characterised by noise or the absence of audio signals, visual cues, notably facial and lip movements, serve as valuable substitutes for missing or corrupted speech signals. In these scenarios, speech reconstruction can potentially generate speech from visual data. Recent advancements in this domain have predominantly relied on end-to-end deep learning models, like Convolutional Neural Networks (CNN) or Generative Adversarial Networks (GAN). However, these models are encumbered by their intricate and opaque architectures, coupled with their lack of speaker independence. Consequently, achieving multi-speaker speech reconstruction without supplementary information is challenging. This research introduces an innovative Gabor-based speech reconstruction system tailored for lightweight and efficient multi-speaker speech restoration. Using our Gabor feature extraction technique, we propose two novel models: GaborCNN2Speech and GaborFea2Speech. These models employ a rapid Gabor feature extraction method to derive lowdimensional mouth region features, encompassing filtered Gabor mouth images and low-dimensional Gabor features as visual inputs. An encoded spectrogram serves as the audio target, and a Long Short-Term Memory (LSTM)-based model is harnessed to generate coherent speech output. Through comprehensive experiments conducted on the GRID corpus, our proposed Gabor-based models have showcased superior performance in sentence and vocabulary reconstruction when compared to traditional end-to-end CNN models. These models stand out for their lightweight design and rapid processing capabilities. Notably, the GaborFea2Speech model presented in this study achieves robust multi-speaker speech reconstruction without necessitating supplementary information, thereby marking a significant milestone in the field of speech reconstruction
    corecore