61 research outputs found

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Interactive, multi-purpose traffic prediction platform using connected vehicles dataset

    Get PDF
    Traffic congestion is a perennial issue because of the increasing traffic demand yet limited budget for maintaining current transportation infrastructure; let alone expanding them. Many congestion management techniques require timely and accurate traffic estimation and prediction. Examples of such techniques include incident management, real-time routing, and providing accurate trip information based on historical data. In this dissertation, a speech-powered traffic prediction platform is proposed, which deploys a new deep learning algorithm for traffic prediction using Connected Vehicles (CV) data. To speed-up traffic forecasting, a Graph Convolution -- Gated Recurrent Unit (GC-GRU) architecture is proposed and analysis of its performance on tabular data is compared to state-of-the-art models. GC-GRU's Mean Absolute Percentage Error (MAPE) was very close to Transformer (3.16 vs 3.12) while achieving the fastest inference time and a six-fold faster training time than Transformer, although Long-Short-Term Memory (LSTM) was the fastest in training. Such improved performance in traffic prediction with a shorter inference time and competitive training time allows the proposed architecture to better cater to real-time applications. This is the first study to demonstrate the advantage of using multiscale approach by combining CV data with conventional sources such as Waze and probe data. CV data was better at detecting short duration, Jam and stand-still incidents and detected them earlier as compared to probe. CV data excelled at detecting minor incidents with a 90 percent detection rate versus 20 percent for probes and detecting them 3 minutes faster. To process the big CV data faster, a new algorithm is proposed to extract the spatial and temporal features from the CSV files into a Multiscale Data Analysis (MDA). The algorithm also leverages Graphics Processing Unit (GPU) using the Nvidia Rapids framework and Dask parallel cluster in Python. The results show a seventy-fold speedup in the data Extract, Transform, Load (ETL) of the CV data for the State of Missouri of an entire day for all the unique CV journeys (reducing the processing time from about 48 hours to 25 minutes). The processed data is then fed into a customized UNet model that learns highlevel traffic features from network-level images to predict large-scale, multi-route, speed and volume of CVs. The accuracy and robustness of the proposed model are evaluated by taking different road types, times of day and image snippets of the developed model and comparable benchmarks. To visually analyze the historical traffic data and the results of the prediction model, an interactive web application powered by speech queries is built to offer accurate and fast insights of traffic performance, and thus, allow for better positioning of traffic control strategies. The product of this dissertation can be seamlessly deployed by transportation authorities to understand and manage congestions in a timely manner.Includes bibliographical references

    Optimized and Automated Machine Learning Techniques Towards IoT Data Analytics and Cybersecurity

    Get PDF
    The Internet-of-Things (IoT) systems have emerged as a prevalent technology in our daily lives. With the wide spread of sensors and smart devices in recent years, the data generation volume and speed of IoT systems have increased dramatically. In most IoT systems, massive volumes of data must be processed, transformed, and analyzed on a frequent basis to enable various IoT services and functionalities. Machine Learning (ML) approaches have shown their capacity for IoT data analytics. However, applying ML models to IoT data analytics tasks still faces many difficulties and challenges. The first challenge is to process large amounts of dynamic IoT data to make accurate and informed decisions. The second challenge is to automate and optimize the data analytics process. The third challenge is to protect IoT devices and systems against various cyber threats and attacks. To address the IoT data analytics challenges, this thesis proposes various ML-based frameworks and data analytics approaches in several applications. Specifically, the first part of the thesis provides a comprehensive review of applying Automated Machine Learning (AutoML) techniques to IoT data analytics tasks. It discusses all procedures of the general ML pipeline. The second part of the thesis proposes several supervised ML-based novel Intrusion Detection Systems (IDSs) to improve the security of the Internet of Vehicles (IoV) systems and connected vehicles. Optimization techniques are used to obtain optimized ML models with high attack detection accuracy. The third part of the thesis developed unsupervised ML algorithms to identify network anomalies and malicious network entities (e.g., attacker IPs, compromised machines, and polluted files/content) to protect Content Delivery Networks (CDNs) from service targeting attacks, including distributed denial of service and cache pollution attacks. The proposed framework is evaluated on real-world CDN access log data to illustrate its effectiveness. The fourth part of the thesis proposes adaptive online learning algorithms for addressing concept drift issues (i.e., data distribution changes) and effectively handling dynamic IoT data streams in order to provide reliable IoT services. The development of drift adaptive learning methods can effectively adapt to data distribution changes and avoid data analytics model performance degradation

    Towards Vehicle-to-everything Autonomous Driving: A Survey on Collaborative Perception

    Full text link
    Vehicle-to-everything (V2X) autonomous driving opens up a promising direction for developing a new generation of intelligent transportation systems. Collaborative perception (CP) as an essential component to achieve V2X can overcome the inherent limitations of individual perception, including occlusion and long-range perception. In this survey, we provide a comprehensive review of CP methods for V2X scenarios, bringing a profound and in-depth understanding to the community. Specifically, we first introduce the architecture and workflow of typical V2X systems, which affords a broader perspective to understand the entire V2X system and the role of CP within it. Then, we thoroughly summarize and analyze existing V2X perception datasets and CP methods. Particularly, we introduce numerous CP methods from various crucial perspectives, including collaboration stages, roadside sensors placement, latency compensation, performance-bandwidth trade-off, attack/defense, pose alignment, etc. Moreover, we conduct extensive experimental analyses to compare and examine current CP methods, revealing some essential and unexplored insights. Specifically, we analyze the performance changes of different methods under different bandwidths, providing a deep insight into the performance-bandwidth trade-off issue. Also, we examine methods under different LiDAR ranges. To study the model robustness, we further investigate the effects of various simulated real-world noises on the performance of different CP methods, covering communication latency, lossy communication, localization errors, and mixed noises. In addition, we look into the sim-to-real generalization ability of existing CP methods. At last, we thoroughly discuss issues and challenges, highlighting promising directions for future efforts. Our codes for experimental analysis will be public at https://github.com/memberRE/Collaborative-Perception.Comment: 19 page

    A Credit-based Home Access Point (CHAP) to Improve Application Quality on IEEE 802.11 Networks

    Get PDF
    Increasing availability of high-speed Internet and wireless access points has allowed home users to connect not only their computers but various other devices to the Internet. Every device running different applications requires unique Quality of Service (QoS). It has been shown that delay- sensitive applications, such as VoIP, remote login and online game sessions, suffer increased latency in the presence of throughput-sensitive applications such as FTP and P2P. Currently, there is no mechanism at the wireless AP to mitigate these effects except explicitly classifying the traffic based on port numbers or host IP addresses. We propose CHAP, a credit-based queue management technique, to eliminate the explicit configuration process and dynamically adjust the priority of all the flows from different devices to match their QoS requirements and wireless conditions to improve application quality in home networks. An analytical model is used to analyze the interaction between flows and credits and resulting queueing delays for packets. CHAP is evaluated using Network Simulator (NS2) under a wide range of conditions against First-In-First- Out (FIFO) and Strict Priority Queue (SPQ) scheduling algorithms. CHAP improves the quality of an online game, a VoIP session, a video streaming session, and a Web browsing activity by 20%, 3%, 93%, and 51%, respectively, compared to FIFO in the presence of an FTP download. CHAP provides these improvements similar to SPQ without an explicit classification of flows and a pre- configured scheduling policy. A Linux implementation of CHAP is used to evaluate its performance in a real residential network against FIFO. CHAP reduces the web response time by up to 85% compared to FIFO in the presence of a bulk file download. Our contributions include an analytic model for the credit-based queue management, simulation, and implementation of CHAP, which provides QoS with minimal configuration at the AP

    Resource allocation in information-centric wireless networking with D2D-enabled MEC: A deep reinforcement learning approach

    Get PDF
    Recently, information-centric wireless networks (ICWNs) have become a promising Internet architecture of the next generation, which allows network nodes to have computing and caching capabilities and adapt to the growing mobile data traffic in 5G high-speed communication networks. However, the design of ICWN is still faced with various challenges with respect to capacity and traffic. Therefore, mobile edge computing (MEC) and device-to-device (D2D) communications can be employed to aid offloading the core networks. This paper investigates the optimal policy for resource allocation in ICWNs by maximizing the spectrum efficiency and system capacity of the overall network. Due to unknown and stochastic properties of the wireless channel environment, this problem was modeled as a Markov decision process. In continuousvalued state and action variables, the policy gradient approach was employed to learn the optimal policy through interactions with the environment. We first recognized the communication mode according to the location of the cached content, considering whether it is D2D mode or cellular mode. Then, we adopt the Gaussian distribution as the parameterization strategy to generate continuous stochastic actions to select power. In addition, we use softmax to output channel selection to maximize system capacity and spectrum efficiency while avoiding interference to cellular users. The numerical experiments show that our learning method performs well in a D2D-enabled MEC system. 2020 Association for Computing Machinery. All rights reserved.This work was supported in part by the National Natural Science Foundation of China under Grant 61772387, in part by the Fundamental Research Funds of Ministry of Education and China Mobile under Grant MCM20170202, in part by the National Natural Science Foundation of Shaanxi Province under Grant 2019ZDLGY03-03, in part by the Graduate Innovation Fund of Xidian University under Grant 5001-20109195456, and in part by the ISN State Key Laboratory.Scopus2-s2.0-8507753100

    A New Form of Interlocking Developing Technology for Level Crossings and Depots with International Applications

    Get PDF
    There are multiple large rail infrastructure projects planned or currently being undertaken within the United Kingdom. Many of these projects aim to reduce the continual issue of limited or overcapacity service. These projects involve an expansion of Rail lines, introducing faster lines, improved stations in towns and cities and better communication networks. Some major projects like Control Period 6 (CP6) are being managed by Network Rail; where projects are initiated throughout Great Britain. Many projects are managed outside Great Britain e.g., Trans-European Transport Network Program, which is planning for expansion of Rail lines (almost double) for High-Speed Rails (category I and II). These projects will increase the number of junctions and Level Crossings. A Level Crossing is where a Rail Line is crossed by a road or a walkway without the use of a tunnel or bridge. The misuse from the road users account for nearly 90% of the fatalities and near misses at Level Crossings. During 2016/2017, the Rail Network recorded 6 fatalities, about 400 near-misses and more than 77 incidents of shock and trauma. Accidents at Level Crossings represent 8% of the total accidents from the whole Rail Network. Office of Rail and Road (ORR) suggested that among these accidents at Level Crossings 90% of them are pedestrians. Such high numbers of accidents, fatalities and high risk have alarmed authorities. These authorities found it necessary to invest time and utilise given resources to improve the safety system at a Level Crossing using the safer and reliable interlocking system. The interlocking system is a feature of a control system that makes the state of two functions mutually independent. The primary function of Interlocking is to ensure that trains are safe from collision and derailment. Considering the risk associated with the Level Crossing system, the new proposed interlocking system should utilise the sensing system available at a Level Crossing to significantly reduce implementation cost and comply with the given standards and Risk Assessments. The new proposed interlocking system is designed to meet the “Safety Integrity Level- SIL” and possibly use the “2oo2” approach for its application at a Level Crossing, where the operational cycle is automated or train driver is alarmed for risk situations. Importantly, the new proposed system should detect and classify small objects and provide a reasonable solution to the current risk associated with Level Crossing, which was impossible with the traditional sensing systems. The present work discusses the sensors and algorithms used and has the potential to detect and classify objects within a Level Crossing area. The review of existing solutions e.g Inductive Loops and other major sensors allows the reader to understand why RADAR and Video Cameras are preferable choices of a sensing system for a Level Crossing. Video data provides sufficient information for the proposed algorithm to detect and classify objects at Level Crossings without the need of a manual “operator”. The RADAR sensing system can provide information using micro-Doppler signatures, which are generated from small regular movements of an obstacle. The two sensors will make the system a two-layer resilient system. The processed information from these two sensing systems is used as the “2oo2” logic system for Interlocking for automating the operational cycle or alarm the train drive using effective communication e.g., GSM-R. These two sensors provide sufficient information for the proposed algorithm, which will allow the system to automatically make an “intelligent decision” and proceed with a safe Level Crossing operational cycle. Many existing traditional algorithms depend on pixels values, which are compared with background pixels. This approach cannot detect complex textures, adapt to a dynamic background or avoid detection of unnecessary harmless objects. To avoid these problems, the proposed work utilises “Deep Learning” technology integrated with the proposed Vision and RADAR system. The Deep Learning technology can learn representations from labelled pixels; hence it does not depend on background pixels. The Deep 3 | P a g e Learning technology can classify, detect and localise objects at a Level Crossing area. It can classify and differentiate between a child and a small inanimate object, which was impossible with traditional algorithms. The system can detect an object regardless of its position, orientation and scale without any additional training because it learns representation from the data and does not rely on background pixels. The proposed system e.g., Deep Learning technology is integrated with the existing Vision System and RADAR installed at a Level Crossing, hence implementation cost is significantly reduced as well. The proposed work address two main aspects of training a model using Deep Learning technology; training from scratch and training using Transfer Learning techniques. Results are demonstrated for Image Classification, Object Detection and micro-Doppler signals from RADAR. An architecture of Convolutional Neural Network from scratch is trained consisting of Input Layer, Convolution, Pooling and Dropout Layer. The model achieves an accuracy of about 66.78%. Different notable models are trained using Transfer Learning techniques and their results are mentioned along with the MobileNet model, which achieves the highest accuracy of 91.9%. The difference between Image Classification and Object Detection is discussed and results for Object Detection are mentioned as well, where the Loss metrics are used to evaluate the performance of the Object Detector. MobileNet achieves the smallest loss metric of about 0.092. These results clearly show the effectiveness and preferability of these models for their applicability at Level Crossings. Another Convolutional Neural Network is trained using micro-Doppler signatures from the Radar system. The model trained using the micro-Doppler signature achieved an accuracy of 92%. The present work also addresses the Risk Assessment associated with the installation and maintenance of the system using Deep Learning technology. RAMS (Reliability, Availability, Maintainability and Safety) management system is used to address the General and Specific Risks associated with the sensing system integrated with the Deep Learning technology. Finally, the work is concluded with the preferred choice, its application, results and associated Risk Assessment. Deep Learning is an evolving field with new improvements being introduced constantly. Any new challenges and problems should be monitored regularly. Some future work is discussed as well. To further improve the model's accuracy, the dataset from the same distribution should be gathered with the cooperation of relevant Railway authorities. Also, the RADAR dataset could be generated rather than simulated to further include diversity and avoid any biases in the dataset during the training process. Also, the proposed system can be implemented and used in different applications within the Rail Industry e.g., passenger census and classification of passengers at the platform as discussed in the work
    • …
    corecore