3,550 research outputs found

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Community-Based Security for the Internet of Things

    Full text link
    With more and more devices becoming connectable to the internet, the number of services but also a lot of threats increases dramatically. Security is often a secondary matter behind functionality and comfort, but the problem has already been recognized. Still, with many IoT devices being deployed already, security will come step-by-step and through updates, patches and new versions of apps and IoT software. While these updates can be safely retrieved from app stores, the problems kick in via jailbroken devices and with the variety of untrusted sources arising on the internet. Since hacking is typically a community effort? these days, security could be a community goal too. The challenges are manifold, and one reason for weak or absent security on IoT devices is their weak computational power. In this chapter, we discuss a community based security mechanism in which devices mutually aid each other in secure software management. We discuss game-theoretic methods of community formation and light-weight cryptographic means to accomplish authentic software deployment inside the IoT device community

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Sinkhole Detection in IOT using Elliptic Curve Digital Signature

    Get PDF
    A variety of smart applications, including homes, transportation, health, and robots in industries, are starting to gain interest due to the fast expansion of Internet of Things (IoT). Smart devices are made up of sensors and actuators that actively involved in monitoring, prediction, security, and information sharing in the IoT ecosystem. These state-of-the-art (SOTA) technologies enable people to monitor and manage their unified milieu in real-time. IoT devices are nevertheless regularly used in hostile situations, where attackers try to grab and penetrate them to take over the entire network. Due to the possibility of selective forwarding, sinkhole, blackhole, and wormhole attacks on IoT networks is a serious security risk. This research offers an effective method using a digital signature to detect and mitigate sinkhole attacks on IoT networks to resolve this problem. By doing a thorough security study of this suggested system, it shows how safe it is and how resistant it is to secure sinkhole attack detection. In this study, elliptic curve digital signature algorithm is used along with the node ranker to detect the sinkhole attack in IoT environment. According to the performance analysis and experimental findings compared to other research, the suggested system offers good detection accuracy and greatly lowers the overhead associated with computing, communication, and storage
    • …
    corecore