1,194 research outputs found

    Coefficients of Sylvester's Denumerant

    Get PDF
    For a given sequence α=[α1,α2,…,αN+1]\mathbf{\alpha} = [\alpha_1,\alpha_2,\dots,\alpha_{N+1}] of N+1N+1 positive integers, we consider the combinatorial function E(α)(t)E(\mathbf{\alpha})(t) that counts the nonnegative integer solutions of the equation α1x1+α2x2+⋯+αNxN+αN+1xN+1=t\alpha_1x_1+\alpha_2 x_2+\cdots+\alpha_{N} x_{N}+\alpha_{N+1}x_{N+1}=t, where the right-hand side tt is a varying nonnegative integer. It is well-known that E(α)(t)E(\mathbf{\alpha})(t) is a quasi-polynomial function in the variable tt of degree NN. In combinatorial number theory this function is known as Sylvester's denumerant. Our main result is a new algorithm that, for every fixed number kk, computes in polynomial time the highest k+1k+1 coefficients of the quasi-polynomial E(α)(t)E(\mathbf{\alpha})(t) as step polynomials of tt (a simpler and more explicit representation). Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for E(α)(t)E(\mathbf{\alpha})(t) and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Our algorithm also uses Barvinok's fundamental fast decomposition of a polyhedral cone into unimodular cones. This paper also presents a simple algorithm to predict the first non-constant coefficient and concludes with a report of several computational experiments using an implementation of our algorithm in LattE integrale. We compare it with various Maple programs for partial or full computation of the denumerant.Comment: minor revision, 28 page

    On the Computation of Clebsch-Gordan Coefficients and the Dilation Effect

    Full text link
    We investigate the problem of computing tensor product multiplicities for complex semisimple Lie algebras. Even though computing these numbers is #P-hard in general, we show that if the rank of the Lie algebra is assumed fixed, then there is a polynomial time algorithm, based on counting the lattice points in polytopes. In fact, for Lie algebras of type A_r, there is an algorithm, based on the ellipsoid algorithm, to decide when the coefficients are nonzero in polynomial time for arbitrary rank. Our experiments show that the lattice point algorithm is superior in practice to the standard techniques for computing multiplicities when the weights have large entries but small rank. Using an implementation of this algorithm, we provide experimental evidence for conjectured generalizations of the saturation property of Littlewood--Richardson coefficients. One of these conjectures seems to be valid for types B_n, C_n, and D_n.Comment: 21 pages, 6 table

    Natural Density Distribution of Hermite Normal Forms of Integer Matrices

    Get PDF
    The Hermite Normal Form (HNF) is a canonical representation of matrices over any principal ideal domain. Over the integers, the distribution of the HNFs of randomly looking matrices is far from uniform. The aim of this article is to present an explicit computation of this distribution together with some applications. More precisely, for integer matrices whose entries are upper bounded in absolute value by a large bound, we compute the asymptotic number of such matrices whose HNF has a prescribed diagonal structure. We apply these results to the analysis of some procedures and algorithms whose dynamics depend on the HNF of randomly looking integer matrices

    Local Euler-Maclaurin formula for polytopes

    Full text link
    We give a local Euler-Maclaurin formula for rational convex polytopes in a rational euclidean space . For every affine rational polyhedral cone C in a rational euclidean space W, we construct a differential operator of infinite order D(C) on W with constant rational coefficients, which is unchanged when C is translated by an integral vector. Then for every convex rational polytope P in a rational euclidean space V and every polynomial function f (x) on V, the sum of the values of f(x) at the integral points of P is equal to the sum, for all faces F of P, of the integral over F of the function D(N(F)).f, where we denote by N(F) the normal cone to P along F.Comment: Revised version (July 2006) has some changes of notation and references adde

    Counting Integer flows in Networks

    Full text link
    This paper discusses new analytic algorithms and software for the enumeration of all integer flows inside a network. Concrete applications abound in graph theory \cite{Jaeger}, representation theory \cite{kirillov}, and statistics \cite{persi}. Our methods clearly surpass traditional exhaustive enumeration and other algorithms and can even yield formulas when the input data contains some parameters. These methods are based on the study of rational functions with poles on arrangements of hyperplanes
    • …
    corecore