2,089 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Study for the scientific development of the Sardinia Radio Telescope/SDSA configured for solar observations and radio-science aimed at Space Weather and Fundamental Physics applications

    Get PDF
    The Sun produces radiation across virtually the entire electromagnetic spectrum, each frequency range helps to better understand a different aspect of our star. In the radio domain, it is an interesting celestial object to study for the richness of physical phenomena that involve not only the astrophysical area of interest, but also plasma, nuclear and fundamental physics. However, even after decades of studies, our star still presents lots of mysteries. My PhD aims to investigate the Sun environment and its emission mechanism in the radio domain to better understand some of the complex solar phenomena, their connections and find applications in the Space Weather and Fundamental Physics fields. This work is possible thanks to new challenging development of the radio telescopes managed by the Italian National Institute of Astrophysics (INAF) and the Italian Space Agency (ASI) in a joint collaboration. SRT is an ideal instrument for this Thesis project thanks to its double configuration: Sardinia Deep Space Antenna (SDSA)/radio astronomy for radio science experiments and solar imaging. The SDSA is in the implementation phase. We are inquiring the most stringent observation scientific requirements that would be necessary to prepare the antenna to perform interplanetary spacecraft tracking in radio-science configuration. The radio-astronomy configuration is already operative and has permitted us to monitor the Sun for the last few years in K-band (18-26 GHz). Moreover, the Medicina radio telescope is fully equipped to perform solar observation and has contributed considerably to the solar imaging studies. Starting 2018, we obtained more than 300 maps of the entire solar disk in the K-band, filling the observational gap in the field of solar imaging at these frequencies. I performed a new calibration procedure adopting the Supernova Remnant Cas A as a flux reference, which provided typical errors <3% for the estimation of the quiet-Sun level components. My work includes a study on the active regions brightness and spectral characterization. The interpretation of the observed emission as thermal bremsstrahlung components combined with gyro-magnetic variable emission paves the way for the use of our system for long-term monitoring of the Sun. We are also starting to explore possible interesting connections between macro-features in our data and explosive Space Weather Phenomena

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Development of a sensor for microvibrations measurement in the AlbaSat CubeSat mission

    Get PDF
    openMicrovibrations on spacecraft represent an issue for payloads requiring high pointing accuracy and/or stability over time, and they might represent a particular concern for CubeSats and small satellites that, usually, are not equipped with very-high performance attitude control systems. Hence, collecting reliable measures of the vibration spectra during the operations of a CubeSat represents a significant research activity. This thesis presents the development of a sensor, configured as a payload within the AlbaSat mission, capable of accurately measuring the microvibrations in space, with particular focus on those produced by the Momentum Exchange Devices (MED), i.e., Reaction or Momentum Wheels, that represent one of the most important microvibrations sources. The thesis takes place in the framework of the AlbaSat mission. AlbaSat is a 2U CubeSat developed by a student team of the University of Padova under the “Fly Your Satellite! – Design Booster” programme promoted by the European Space Agency (ESA). The mission has four different objectives: (1) to collect measurements of the space debris environment in-situ, (2) to measure the microvibrations on board the CubeSat, (3) to precisely determine the position of the satellite through laser ranging and (4) to investigate alternative systems for possible Satellite Quantum Communication applications on nanosatellites. The requirements for the correct sizing of the sensor and the chosen physical and functional architecture are defined and presented in the thesis. A meticulous schedule for functional tests is finally outlined, aimed at verifying the correct functionality of the microvibration sensor. These tests serve as a starting point for the future development of the payload.Microvibrations on spacecraft represent an issue for payloads requiring high pointing accuracy and/or stability over time, and they might represent a particular concern for CubeSats and small satellites that, usually, are not equipped with very-high performance attitude control systems. Hence, collecting reliable measures of the vibration spectra during the operations of a CubeSat represents a significant research activity. This thesis presents the development of a sensor, configured as a payload within the AlbaSat mission, capable of accurately measuring the microvibrations in space, with particular focus on those produced by the Momentum Exchange Devices (MED), i.e., Reaction or Momentum Wheels, that represent one of the most important microvibrations sources. The thesis takes place in the framework of the AlbaSat mission. AlbaSat is a 2U CubeSat developed by a student team of the University of Padova under the “Fly Your Satellite! – Design Booster” programme promoted by the European Space Agency (ESA). The mission has four different objectives: (1) to collect measurements of the space debris environment in-situ, (2) to measure the microvibrations on board the CubeSat, (3) to precisely determine the position of the satellite through laser ranging and (4) to investigate alternative systems for possible Satellite Quantum Communication applications on nanosatellites. The requirements for the correct sizing of the sensor and the chosen physical and functional architecture are defined and presented in the thesis. A meticulous schedule for functional tests is finally outlined, aimed at verifying the correct functionality of the microvibration sensor. These tests serve as a starting point for the future development of the payload

    Acoustic Propagation Variation with Temperature Profile in Water Filled Steel Pipes at Pressure

    Get PDF
    Conventional pressure leak testing of buried pipelines compares measurements of pressure with pipe wall temperature. An alternative proposed method uses acoustic velocity measurements to replace pipe wall temperature measurements. Early experiments using this method identified anomalous results of rising acoustic velocities thought to be caused by air solution. This research investigated the anomalous acoustic velocity measurements by evaluation of acoustic velocity variation with pressure, temperature and air solution. Quiescent air solution rate experiments were carried out in water filled pipes. Computer modelling of the air bubble shape variation with pipe diameter was found to agree with bubble and drop experiments over the pipe diameter range from 100 mm to 1000 mm. Bubbles were found to maintain constant width over a large volume range confirmed by experiments and modelling

    Technology for Low Resolution Space Based RSO Detection and Characterisation

    Get PDF
    Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. SSA is critical to all current and future space activities and protect space assets by providing access control, conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure are not sufficient to account for the proliferations of space debris. In response to the need for better SSA there has been many different areas of research looking to improve SSA most of the requiring dedicated ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s (Resident Space Objects) from passive low-resolution space-based sensors is presented with all the background work performed to enable this novel method. Low resolution space-based sensors are common on current satellites, with many of these sensors being in space using them passively to detect RSO’s can greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to overcome with research in the area has to do with the lack of publicly available labelled data to test and confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one of the only publicly available low-resolution space-based images found with auxiliary data. During the development of the ORBITALS simulator it was found that the generation of these simulated images are computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was performed to allow the algorithm to run in parallel reducing the computational time required to propagate entire catalogs of RSO’s. From the results it was found that the standard facet model with a particle swarm optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms in a simulated environment

    ICEBEAR-3D: An Advanced Low Elevation Angle Auroral E region Imaging Radar

    Get PDF
    The Ionospheric Continuous-wave E region Bistatic Experimental Auroral Radar (ICEBEAR) is an auroral E~region radar which has operated from 7 December 2017 until the September 2019. During the first two years of operation, ICEBEAR was only capable of spatially locating E~region scatter and meteor trail targets in range and azimuth. Elevation angles were not determinable due to its East-West uniform linear receiving antenna array. Measuring elevation angles of targets when viewing from low elevation angles with radar interferometers has been a long standing problem. Past high latitude radars have attempted to obtain elevation angles of E~region targets using North-South baselines, but have always resulted in erroneous elevation angles being measured in the low elevation regime (0° to ≈30° above the horizon), leaving interesting scientific questions about scatter altitudes in the auroral E~region unanswered. The work entailed in this thesis encompasses the design of the ICEBEAR-3D system for the acquisition of these important elevation angles. The receiver antenna array was redesigned using a custom phase error minimization and stochastic antenna location perturbation technique, which produces phase tolerant receiver antenna arrays. The resulting 45-baseline sparse non-uniform coplanar T-shaped array was designed for aperture synthesis radar imaging. Conventional aperture synthesis radar imaging techniques assume point-like incoherent targets and image using a Cartesian basis over a narrow field of view. These methods are incompatible with horizon pointing E~region radars such as ICEBEAR. Instead, radar targets were imaged using the Suppressed Spherical Wave Harmonic Transform (Suppressed-SWHT) technique. This imaging method uses precalculated spherical harmonic coefficient matrices to transform the visibilities to brightness maps by direct matrix multiplication. The under sampled image domain artefacts (dirty beam) were suppressed by the products of differing harmonic order brightness maps. From the images, elevation and azimuth angles of arrival were obtained. Due to the excellent phase tolerance of ICEBEAR new light was shed on the long standing low elevation angle problem. This led to the development of the proper phase reference vertical interferometry geometry, which allowed horizon pointing radar interferometers to unambiguously measure elevation angles near the horizon. Ultimately resulting in accurate elevation angles from zenith to horizon

    Leveraging Manifold Theory for Trajectory Design - A Focus on Futuristic Cislunar Missions

    Get PDF
    Optimal control methods for designing trajectories have been studied extensively by astro-dynamicists. Direct and indirect methods provide separate approaches to arrive at the optimal solution, each having their associated advantages and challenges. Among the realm of optimized transfer trajectories, fuel-optimal trajectories are typically most sought and characterized by se-quential thrust and coast arcs. On the other hand, it is well known that a simplified dynamical model like the CR3BP analyzed in a rotating coordinate system, reveal fixed points known as Lagrange points. These spatial points can be orbited, with researchers categorizing periodic orbits around them starting from the simple planar Lyapunov orbits and continuing to the more enigmatic butterfly orbits. Studying linearized dynamics using eigenanalysis in the vicinity of a point on these periodic orbits lead to interesting departures spatially manifesting into the invariant manifolds. This thesis delves into the novel idea of merging aspects of invariant manifold theory and indirect optimal control methods to provide efficient computation of feasible transfer trajectories. The marriage of these ideas provide the possibility of alleviating the challenges of an end-to end optimization using indirect methods for a long mission by utilizing the pre-computed and analyzed manifolds for insertion points of a long terminal coast arc. In addition to this, realistic and accurate mission scenarios require consideration of a high-fidelity dynamical model as well as shadow constraints. A methodology to use the “manifold analogues” in such cases has been discussed and utilized in this thesis along with modelling of eclipses during optimization, providing mission designers a basis for efficient and accurate/mission-ready trajectory design. This overcomes the shortcomings in state of the art software packages such as MYSTIC and COPERNICUS

    A Process for the Restoration of Performances from Musical Errors on Live Progressive Rock Albums

    Get PDF
    In the course of my practice of producing live progressive rock albums, a significant challenge has emerged: how to repair performance errors while retaining the intended expressive performance. Using a practice as research methodology, I develop a novel process, Error Analysis and Performance Restoration (EAPR), to restore a performer’s intention where an error was assessed to have been made. In developing this process, within the context of my practice, I investigate: the nature of live albums and the groups to which I am accountable, a definition of performance errors, an examination of their causes, and the existing literature on these topics. In presenting EAPR, I demonstrate, drawing from existing research, a mechanism by which originally intended performances can be extracted from recorded errors. The EAPR process exists as a conceptual model; each album has a specific implementation to address the needs of that album, and the currently available technology. Restoration techniques are developed as part of this implementation. EAPR is developed and demonstrated through my work restoring performances on a front-line commercial live release, the Creative Submission Album. The specific EAPR implementation I design for it is laid out, and detailed examples of its techniques demonstrated
    • 

    corecore