88 research outputs found

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Full text link

    Fuzzy Logic Controlled Microturbine Generation System for Distributed Generation

    Get PDF
    AbstractThe microturbine based Distributed Generation (DG) system are becoming the popular source of power industries due to their fuel flexibility, reliability and power quality. The microturbine generation (MTG) system is a complicated thermodynamic electromechanical system with a high speed of rotation, frequency conversion and its control strategy. In spite of several techniques to control high speed of microturbine is not accurate and reliable due to their anti-interference problem. To resolve the anti-interfacing problem, this paper investigates the fuzzy logic based speed governor for a MTG system as an alternative to nominal PI or lead-lag based controller. The development of fuzzy logic based speed governor includes input and output membership function with their respective members. The load variation on MTG system is performed using conventional and fuzzy logic controller, implemented in Matlab/simulink and results are compared with each other. The simulation result shows that, the performance improvement of fuzzy logic governor over a nominal governor based MTG system

    Electrical Model Development and Validation for Distributed Resources

    Full text link

    Modeling and Analysis of Active Front-End Induction Motor Drive for Reactive Power Compensation

    Get PDF
    In this thesis, an active front end induction motor drive for reactive power compensation is analyzed. The classical vector control approach for high performance control of an induction motor drive is a well established industry standard today. The same idea of decoupled control is extended to the line-side PWM converter for achieving better dynamic performance. The system model is obtained using d-q rotating frame theory. The iqe component of line currents is used to control the reactive power. The idecomponent is used to control the dc-link voltage and also to supply active power required by the motor. A high gain feedback controller with input-output linearization is presented to remove coupling between iqe and ide currents. A load power feed-forward loop is added to the dc-link voltage controller for fast dynamic response. The drive performance is analyzed to define system specifications. The motor acceleration, deceleration, and variable power factor operation (reactive power compensation) of the active drive system are demonstrated. The motor load is varied from no load to full load in steps of 10% each. For each step the device currents, switching power loss, line harmonics, and dc-link ripples are plotted. This data is used to derive conclusions that define system specifications and also state operating limits. The control of the drive system is implemented in MATLAB-SIMULINK. The complete system hardware is implemented in commercially available simulation tool, PSIM. The two software packages are interlinked using an interface module

    Distributed energy resources in grid interactive AC microgrids

    Get PDF

    Microturbine Power Conversion Technology Review

    Full text link

    Advance control of multilevel converters for integration of distributed generation resources into ac grid

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialDistributed generation (DG) with a converter interface to the power grid is found in many of the green power resources applications. This dissertation describes a multi-objective control technique of voltage source converter (VSC) based on multilevel converter topologies, for integration of DG resources based on renewable energy (and non-renewable energy)to the power grid. The aims have been set to maintain a stable operation of the power grid, in case of di erent types of grid-connected loads. The proposed method provides compensation for active, reactive, and harmonic load current components. A proportional-integral (PI) control law is derived through linearization of the inherently non-linear DG system model, so that the tasks of current control dynamics and dc capacitor voltage dynamics become decoupled. This decoupling allows us to control the DG output currents and the dc bus voltage independently of each other, thereby providing either one of these decoupled subsystems a dynamic response that signi cantly slower than that of the other. To overcome the drawbacks of the conventional method, a computational control delay compensation method, which delaylessly and accurately generates the DG reference currents, is proposed. The rst step is to extract the DG reference currents from the sensed load currents by applying the stationary reference frame and then transferred into synchronous reference frame method, and then, the reference currents are modi ed, so that the delay will be compensated. The transformed variables are used in control of the multilevel voltage source converter as the heart of the interfacing system between DG resources and power grid. By setting appropriate compensation current references from the sensed load currents in control circuit loop of DG link, the active, reactive, and harmonic load current components will be compensated with fast dynamic response, thereby achieving sinusoidal grid currents in phase with load voltages while required power of loads is more than the maximum injected power of the DG resources. The converter, which is controlled by the described control strategy, guarantees maximum injection of active power to the grid continuously, unity displacement power factor of power grid, and reduced harmonic load currents in the common coupling point. In addition, high current overshoot does not exist during connection of DG link to the power grid, and the proposed integration strategy is insensitive to grid overload.La Generació Distribuïda (DG) injectada a la xarxa amb un convertidor estàtic és una solució molt freqüent en l'ús de molts dels recursos renovables. Aquesta tesis descriu una técnica de control multi-objectiu del convertidor en font de tensió (VSC), basat en les topologies de convertidor multinivell, per a la integració de les fonts distribuïdes basades en energies renovables i també de no renovables.Els objectius fixats van encaminats a mantenir un funcionament estable de la xarxa elèctrica en el cas de la connexió de diferents tipus de càrregues. El mètode de control proposat ofereix la possibilitat de compensació de les components actives i reactives de la potencia, i les components harmòniques del corrent consumit per les càrregues.La llei de control proporcional-Integral (PI) s’obté de la linearització del model inherentment no lineal del sistema, de forma que el problema de control del corrent injectat i de la tensió d’entrada del convertidor queden desacoblats. Aquest desacoblament permet el control dels corrents de sortida i la tensió del bus de forma independent, però amb un d’ells amb una dinàmica inferior.Per superar els inconvenients del mètode convencional, s’usa un retard computacional, que genera les senyals de referència de forma acurada i sense retard. El primer pas es calcular els corrents de referència a partir de les mesures de corrent. Aquest càlcul es fa primer transformant les mesures a la referència estacionaria per després transformar aquests valors a la referència síncrona. En aquest punt es on es poden compensar els retards.Les variables transformades son usades en els llaços de control del convertidor multinivell. Mitjançant aquests llaços de control i les referències adequades, el convertidor és capaç de compensar la potencia activa, reactiva i els corrents harmònics de la càrrega amb una elevada resposta dinàmica, obtenint uns corrents de la xarxa de forma completament sinusoïdal, i en fase amb les tensions.El convertidor, controlat amb el mètode descrit, garanteix la màxima injecció de la potencia activa, la injecció de la potencia reactiva per compensar el factor de potencia de la càrrega, i la reducció de les components harmòniques dels corrents consumits per la càrrega. A més, garanteix una connexió suau entre la font d’energia i la xarxa. El sistema proposat es insensible en front de la sobrecarrega de la xarxaAward-winningPostprint (published version

    Current control strategy of grid-connected inverter for distributed generation under nonliner load conditions

    Get PDF
    Distributed generation (DG) has become more important in recent years for supplementing traditional fossil energy resources for power generation. The DGs include microturbine (MT), fuel cell, photovoltaic (PV) arrays, wind turbine and storage devices. The DG units can operate in parallel to the main grid or in a microgrid (MG) mode. The MG is a discrete energy system consisting of DG and loads that are capable of operating in parallel with, or independently from the main grid. Meanwhile, Grid-Connected Inverters (GCIs) are typically used as the interfaces to connect each DG to the common bus in an MG mode. In the ongoing effort to improve the performance of MG, control strategy of three-phase GCI under nonlinear load conditions has become a mature and well-developed research topic, and some control strategies have been implemented in several countries. A new approach is proposed to control the GCI of DG in an MG under nonlinear and unbalanced load conditions. The proposed control strategy features the synchronous reference frame method. The primary advantage of this method is its ability to effectively compensate for the harmonic current content of the system currents and MG without using any compensation devices, such as an Active Power Filter (APF) or passive filter. In this system, the control strategy is designed to eliminate the main harmonics as well as to cancel the remaining harmonics. Furthermore, correction of the system unbalance is another key feature of the proposed strategy. Fast dynamic response, simple design, stability, and fast transient response are other key features of the presented strategy. The current total harmonic distortions were reduced from above 37.8% to less than 1% with the proposed control strategy under nonlinear load conditions. The proposed control method can be used on the GCI of MT and PV; and has the ability to reduce the complexity, size and cost of the control method in comparison with APFs
    corecore