15 research outputs found

    Multi-label Classification via Adaptive Resonance Theory-based Clustering

    Full text link
    This paper proposes a multi-label classification algorithm capable of continual learning by applying an Adaptive Resonance Theory (ART)-based clustering algorithm and the Bayesian approach for label probability computation. The ART-based clustering algorithm adaptively and continually generates prototype nodes corresponding to given data, and the generated nodes are used as classifiers. The label probability computation independently counts the number of label appearances for each class and calculates the Bayesian probabilities. Thus, the label probability computation can cope with an increase in the number of labels. Experimental results with synthetic and real-world multi-label datasets show that the proposed algorithm has competitive classification performance to other well-known algorithms while realizing continual learning

    Network-based brain computer interfaces: principles and applications

    Full text link
    Brain-computer interfaces (BCIs) make possible to interact with the external environment by decoding the mental intention of individuals. BCIs can therefore be used to address basic neuroscience questions but also to unlock a variety of applications from exoskeleton control to neurofeedback (NFB) rehabilitation. In general, BCI usability critically depends on the ability to comprehensively characterize brain functioning and correctly identify the user s mental state. To this end, much of the efforts have focused on improving the classification algorithms taking into account localized brain activities as input features. Despite considerable improvement BCI performance is still unstable and, as a matter of fact, current features represent oversimplified descriptors of brain functioning. In the last decade, growing evidence has shown that the brain works as a networked system composed of multiple specialized and spatially distributed areas that dynamically integrate information. While more complex, looking at how remote brain regions functionally interact represents a grounded alternative to better describe brain functioning. Thanks to recent advances in network science, i.e. a modern field that draws on graph theory, statistical mechanics, data mining and inferential modelling, scientists have now powerful means to characterize complex brain networks derived from neuroimaging data. Notably, summary features can be extracted from these networks to quantitatively measure specific organizational properties across a variety of topological scales. In this topical review, we aim to provide the state-of-the-art supporting the development of a network theoretic approach as a promising tool for understanding BCIs and improve usability

    Chronology of brain tumor classification of intelligent systems based on mathematical modeling, simulation and image processing techniques

    Get PDF
    Tumor classification using image processing techniques is becoming a powerful tool nowadays. Based on the importance of this technique, the motivation of this review paper is to present the chronology of brain tumor classification using the digital images and govern the mathematical modeling and simulation of intelligent systems. The intelligent system involves artificial neural network (ANN), fuzzy logic (FL), support vector machine (SVM), and parallel support vector machine (PSVM). The chronology of brain tumor classification presents the latest part of the literature reviews related to the principal, type and interpretation of segmentation and classification of brain tumors via the large digital dataset from magnetic resonance imaging (MRI) images. This paper has been classified the modeling and simulation in classical and automatic models. Around 115 literature reviews in high ranking journal and high citation index are referred. This paper contains 6 contents, including mathematical modeling, numerical simulation, image processing, numerical results and performance, lastly is the conclusion to standardize the frame concept for the future of chronological framework involving the mathematical modeling and simulation. Research outcome to differentiate the tumor classification based on MRI images, modeling and simulation. Future work outlier in segmentation and classification are given in conclusion

    Novas estratégias de pré-processamento, extração de atributos e classificação em sistemas BCI

    Get PDF
    Orientador: Romis Ribeiro de Faissol AttuxTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: As interfaces cérebro-computador (BCIs) visam controlar um dispositivo externo, utilizando diretamente os sinais cerebrais do usuário. Tais sistemas requerem uma série de etapas para processar e extrair atributos relevantes dos sinais observados para interpretar correta e eficientemente as intenções do usuário. Embora o campo tenha se desenvolvido continuamente e algumas dificuldades tenham sido superadas, ainda é necessário aumentar a capacidade de uso, melhorando sua capacidade de classificação e aumentando a confiabilidade de sua resposta. O objetivo clássico da pesquisa de BCI é apoiar a comunicação e o controle para usuários com comunicação prejudicada devido a doenças ou lesões. Aplicações típicas das BCI são a operação de cursores de interface, programas de escrita de texto ou dispositivos externos, como cadeiras de rodas, robôs e diferentes tipos de próteses. O usuário envia informações moduladas para a BCI, realizando tarefas mentais que produzem padrões cerebrais distintos. A BCI adquire sinais do cérebro do usuário e os traduz em comunicação adequada. Esta tese tem como objetivo desenvolver uma comunicação BCI não invasiva mais rápida e confiável baseada no estudo de diferentes técnicas que atuam nas etapas de processamento do sinal, considerando dois aspectos principais, a abordagem de aprendizado de máquina e a redução da complexidade na tarefa de aprendizado dos padrões mentais pelo usuário. A pesquisa foi focada em dois paradigmas de BCI, Imagética Motora (IM) e o potencial relacionado ao evento P300. Algoritmos de processamento de sinais para a detecção de ambos os padrões cerebrais foram aplicados e avaliados. O aspecto do pré-processamento foi a primeira perspectiva estudada, considerando como destacar a resposta dos fenômenos cerebrais, em relação ao ruído e a outras fontes de informação que talvez distorçam o sinal de EEG; isso em si é um passo que influenciará diretamente a resposta dos seguintes blocos de processamento e classificação. A Análise de Componente Independente (ICA) foi usada em conjunto com métodos de seleção de atributos e diferentes classificadores para separar as fontes originais relacionadas à dessincronização produzida pelo fenômeno de IM; esta foi uma tentativa de criar um tipo de filtro espacial que permitisse o sinal ser pré-processado, reduzindo a influência do ruído. Além disso, os resultados dos valores de classificação foram analisados considerando a comparação com métodos padrão de pré-processamento, como o filtro CAR. Os resultados mostraram que é possível separar os componentes relacionados à atividade motora. A proposta da ICA, em média, foi 4\% mais alta em porcentagem de precisão de classificação do que os resultados obtidos usando o CAR, ou quando nenhum filtro foi usado. O papel dos métodos que estudam a conectividade de diferentes áreas do cérebro foi avaliado como a segunda contribuição deste trabalho; Isso permitiu considerar aspectos que contemplam a complexidade da resposta cerebral de um usuário. A área da BCI precisa de uma interpretação mais profunda do que acontece no nível do cérebro em vários dos fenômenos estudados. A técnica utilizada para construir grafos de conectividade funcional foi a correntropia, esta medida foi utilizada para quantificar a similaridade; uma comparação foi feita usando também, as medidas de correlação de Spearman e Pearson. A conectividade funcional relaciona diferentes áreas do cérebro analisando sua atividade cerebral, de modo que o estudo do grafo foi avaliado utilizando três medidas de centralidade, onde a importância de um nó na rede é medida. Também, dois tipos de classificadores foram testados, comparando os resultados no nível de precisão de classificação. Em conclusão, a correntropia pode trazer mais informações para o estudo da conectividade do que o uso da correlação simples, o que trouxe melhorias nos resultados da classificação, especialmente quando ela foi utilizada com o classificador ELM. Finalmente, esta tese demonstra que os BCIs podem fornecer comunicação efetiva em uma aplicação onde a predição da resposta de classificação foi modelada, o que permitiu a otimização dos parâmetros do processamento de sinal realizado usando o filtro espacial xDAWN e um classificador FLDA para o problema do speller P300, buscando a melhor resposta para cada usuário. O modelo de predição utilizado foi Bayesiano e confirmou os resultados obtidos com a operação on-line do sistema, permitindo otimizar os parâmetros tanto do filtro quanto do classificador. Desta forma, foi visto que usando filtros com poucos canais de entrada, o modelo otimizado deu melhores resultados de acurácia de classificação do que os valores inicialmente obtidos ao treinar o filtro xDAWN para os mesmos casos. Os resultados obtidos mostraram que melhorias nos métodos do transdutor BCI, no pré-processamento, extração de características e classificação constituíram a base para alcançar uma comunicação BCI mais rápida e confiável. O avanço nos resultados da classificação foi obtido em todos os casos, comparado às técnicas que têm sido amplamente utilizadas e já mostraram eficácia para esse tipo de problema. No entanto, ainda há aspectos a considerar da resposta dos sujeitos para tipos específicos de paradigmas, lembrando que sua resposta pode variar ao longo de diferentes dias e as implicações reais disso na definição e no uso de diferentes métodos de processamento de sinalAbstract: Brain-computer interfaces (BCIs) aim to control an external device by directly employing user's brain signals. Such systems require a series of steps to process and extract relevant features from the observed signals to correctly and efficiently interpret the user's intentions. Although the field has been continuously developing and some difficulties have been overcome, it is still necessary to increase usability by enhancing their classification capacity and increasing the reliability of their response. The classical objective of BCI research is to support communication and control for users with impaired communication due to illness or injury. Typical BCI applications are the operation of interface cursors, spelling programs or external devices, such as wheelchairs, robots and different types of prostheses. The user sends modulated information to the BCI by engaging in mental tasks that produce distinct brain patterns. The BCI acquires signals from the user¿s brain and translates them into suitable communication. This thesis aims to develop faster and more reliable non-invasive BCI communication based on the study of different techniques that serve in the signal processing stages, considering two principal aspects, the machine learning approach, and the reduction of the complexity in the task of learning the mental patterns by the user. Research was focused on two BCI paradigms, Motor Imagery (MI) and the P300 event related potential (ERP). Signal processing algorithms for the detection of both brain patterns were applied and evaluated. The aspect of the pre-processing was the first perspective studied to consider how to highlight the response of brain phenomena, in relation to noise and other sources of information that maybe distorting the EEG signal; this in itself is a step that will directly influence the response of the following blocks of processing and classification. The Independent Component Analysis (ICA) was used in conjunction with feature selection methods and different classifiers to separate the original sources that are related to the desynchronization produced by MI phenomenon; an attempt was made to create a type of spatial filter that pre-processed the signal, reducing the influence of the noise. Furthermore, some of the classifications values were analyzed considering comparison when used other standard pre-processing methods, as the CAR filter. The results showed that it is possible to separate the components related to motor activity. The ICA proposal on average were 4\% higher in percent of classification accuracy than those obtained using CAR, or when no filter was used. The role of methods that study the connectivity of different brain areas were evaluated as the second contribution of this work; this allowed to consider aspects that contemplate the complexity of the brain response of a user. The area of BCI needs a deeper interpretation of what happens at the brain level in several of the studied phenomena. The technique used to build functional connectivity graphs was correntropy, this quantity was used to measure similarity, a comparison was made using also, the Spearman and Pearson correlation. Functional connectivity relates different brain areas activity, so the study of the graph was evaluated using three measures of centrality of graph, where the importance of a node in the network is measured. In addition, two types of classifiers were tested, comparing the results at the level of classification precision. In conclusion, the correntropy can bring more information for the study of connectivity than the use of the simple correlation, which brought improvements in the classification results especially when it was used with the ELM classifier. Finally, this thesis demonstrates that BCIs can provide effective communication in an application where the prediction of the classification response was modeled, which allowed the optimization of the parameters of the signal processing performed using the xDAWN spatial filter and a FLDA classifier for the problem of the P300 speller, seeking the best response for each user. The prediction model used was Bayesian and confirmed the results obtained with the on-line operation of the system, thus allowing to optimize the parameters of both the filter and the classifier. In this way it was seen that using filters with few inputs the optimized model gave better results of acuraccy classification than the values initially obtained when the training ofthe xDAWN filter was made for the same cases. The obtained results showed that improvements in the BCI transducer, pre-processing, feature extraction and classification methods constituted the basis to achieve faster and more reliable BCI communication. The advance in the classification results were obtained in all cases, compared to techniques that have been widely used and had already shown effectiveness for this type of problemsDoutoradoEngenharia de ComputaçãoDoutora em Engenharia Elétrica153311/2014-2CNP

    Relevant data representation by a Kernel-based framework

    Get PDF
    Nowadays, the analysis of a large amount of data has emerged as an issue of great interest taking increasing place in the scientific community, especially in automation, signal processing, pattern recognition, and machine learning. In this sense, the identification, description, classification, visualization, and clustering of events or patterns are important problems for engineering developments and scientific issues, such as biology, medicine, economy, artificial vision, artificial intelligence, and industrial production. Nonetheless, it is difficult to interpret the available information due to its complexity and a large amount of obtained features. In addition, the analysis of the input data requires the development of methodologies that allow to reveal the relevant behaviors of the studied process, particularly, when such signals contain hidden structures varying over a given domain, e.g., space and/or time. When the analyzed signal contains such kind of properties, directly applying signal processing and machine learning procedures without considering a suitable model that deals with both the statistical distribution and the data structure, can lead in unstable performance results. Regarding this, kernel functions appear as an alternative approach to address the aforementioned issues by providing flexible mathematical tools that allow enhancing data representation for supporting signal processing and machine learning systems. Moreover, kernelbased methods are powerful tools for developing better-performing solutions by adapting the kernel to a given problem, instead of learning data relationships from explicit raw vector representations. However, building suitable kernels requires some user prior knowledge about input data, which is not available in most of the practical cases. Furthermore, using the definitions of traditional kernel methods directly, possess a challenging estimation problem that often leads to strong simplifications that restrict the kind of representation that we can use on the data. In this study, we propose a data representation framework based on kernel methods to learn automatically relevant sample relationships in learning systems. Namely, the proposed framework is divided into five kernel-based approaches, which aim to compute relevant data representations by adapting them according to both the imposed sample relationships constraints and the learning scenario (unsupervised or supervised task). First, we develop a kernel-based representation approach that allows revealing the main input sample relations by including relevant data structures using graph-based sparse constraints. Thus, salient data structures are highlighted aiming to favor further unsupervised clustering stages. This approach can be viewed as a graph pruning strategy within a spectral clustering framework which allows enhancing both the local and global data consistencies for a given input similarity matrix. Second, we introduce a kernel-based representation methodology that captures meaningful data relations in terms of their statistical distribution. Thus, an information theoretic learning (ITL) based penalty function is introduced to estimate a kernel-based similarity that maximizes the whole information potential variability. So, we seek for a reproducing kernel Hilbert space (RKHS) that spans the widest information force magnitudes among data points to support further clustering stages. Third, an entropy-like functional on positive definite matrices based on Renyi’s definition is adapted to develop a kernel-based representation approach which considers the statistical distribution and the salient data structures. Thereby, relevant input patterns are highlighted in unsupervised learning tasks. Particularly, the introduced approach is tested as a tool to encode relevant local and global input data relationships in dimensional reduction applications. Fourth, a supervised kernel-based representation is introduced via a metric learning procedure in RKHS that takes advantage of the user-prior knowledge, when available, regarding the studied learning task. Such an approach incorporates the proposed ITL-based kernel functional estimation strategy to adapt automatically the relevant representation using both the supervised information and the input data statistical distribution. As a result, relevant sample dependencies are highlighted by weighting the input features that mostly encode the supervised learning task. Finally, a new generalized kernel-based measure is proposed by taking advantage of different RKHSs. In this way, relevant dependencies are highlighted automatically by considering the input data domain-varying behavior and the user-prior knowledge (supervised information) when available. The proposed measure is an extension of the well-known crosscorrentropy function based on Hilbert space embeddings. Throughout the study, the proposed kernel-based framework is applied to biosignal and image data as an alternative to support aided diagnosis systems and image-based object analysis. Indeed, the introduced kernel-based framework improve, in most of the cases, unsupervised and supervised learning performances, aiding researchers in their quest to process and to favor the understanding of complex dataResumen: Hoy en día, el análisis de datos se ha convertido en un tema de gran interés para la comunidad científica, especialmente en campos como la automatización, el procesamiento de señales, el reconocimiento de patrones y el aprendizaje de máquina. En este sentido, la identificación, descripción, clasificación, visualización, y la agrupación de eventos o patrones son problemas importantes para desarrollos de ingeniería y cuestiones científicas, tales como: la biología, la medicina, la economía, la visión artificial, la inteligencia artificial y la producción industrial. No obstante, es difícil interpretar la información disponible debido a su complejidad y la gran cantidad de características obtenidas. Además, el análisis de los datos de entrada requiere del desarrollo de metodologías que permitan revelar los comportamientos relevantes del proceso estudiado, en particular, cuando tales señales contienen estructuras ocultas que varían sobre un dominio dado, por ejemplo, el espacio y/o el tiempo. Cuando la señal analizada contiene este tipo de propiedades, los rendimientos pueden ser inestables si se aplican directamente técnicas de procesamiento de señales y aprendizaje automático sin tener en cuenta la distribución estadística y la estructura de datos. Al respecto, las funciones núcleo (kernel) aparecen como un enfoque alternativo para abordar las limitantes antes mencionadas, proporcionando herramientas matemáticas flexibles que mejoran la representación de los datos de entrada. Por otra parte, los métodos basados en funciones núcleo son herramientas poderosas para el desarrollo de soluciones de mejor rendimiento mediante la adaptación del núcleo de acuerdo al problema en estudio. Sin embargo, la construcción de funciones núcleo apropiadas requieren del conocimiento previo por parte del usuario sobre los datos de entrada, el cual no está disponible en la mayoría de los casos prácticos. Por otra parte, a menudo la estimación de las funciones núcleo conllevan sesgos el modelo, siendo necesario apelar a simplificaciones matemáticas que no siempre son acordes con la realidad. En este estudio, se propone un marco de representación basado en métodos núcleo para resaltar relaciones relevantes entre los datos de forma automática en sistema de aprendizaje de máquina. A saber, el marco propuesto consta de cinco enfoques núcleo, en aras de adaptar la representación de acuerdo a las relaciones impuestas sobre las muestras y sobre el escenario de aprendizaje (sin/con supervisión). En primer lugar, se desarrolla un enfoque de representación núcleo que permite revelar las principales relaciones entre muestras de entrada mediante la inclusión de estructuras relevantes utilizando restricciones basadas en modelado por grafos. Por lo tanto, las estructuras de datos más sobresalientes se destacan con el objetivo de favorecer etapas posteriores de agrupamiento no supervisado. Este enfoque puede ser visto como una estrategia de depuración de grafos dentro de un marco de agrupamiento espectral que permite mejorar las consistencias locales y globales de los datos En segundo lugar, presentamos una metodología de representación núcleo que captura relaciones significativas entre muestras en términos de su distribución estadística. De este modo, se introduce una función de costo basada en aprendizaje por teoría de la información para estimar una similitud que maximice la variabilidad del potencial de información de los datos de entrada. Así, se busca un espacio de Hilbert generado por el núcleo que contenga altas fuerzas de información entre los puntos para favorecer el agrupamiento entre los mismos. En tercer lugar, se propone un esquema de representación que incluye un funcional de entropía para matrices definidas positivas a partir de la definición de Renyi. En este sentido, se pretenden incluir la distribución estadística de las muestras y sus estructuras relevantes. Por consiguiente, los patrones de entrada pertinentes se destacan en tareas de aprendizaje sin supervisión. En particular, el enfoque introducido se prueba como una herramienta para codificar las relaciones locales y globales de los datos en tareas de reducción de dimensión. En cuarto lugar, se introduce una metodología de representación núcleo supervisada a través de un aprendizaje de métrica en el espacio de Hilbert generado por una función núcleo en aras de aprovechar el conocimiento previo del usuario con respecto a la tarea de aprendizaje. Este enfoque incorpora un funcional por teoría de información que permite adaptar automáticamente la representación utilizando tanto información supervisada y la distribución estadística de los datos de entrada. Como resultado, las dependencias entre las muestras se resaltan mediante la ponderación de las características de entrada que codifican la tarea de aprendizaje supervisado. Por último, se propone una nueva medida núcleo mediante el aprovechamiento de diferentes espacios de representación. De este modo, las dependencias más relevantes entre las muestras se resaltan automáticamente considerando el dominio de interés de los datos de entrada y el conocimiento previo del usuario (información supervisada). La medida propuesta es una extensión de la función de cross-correntropia a partir de inmersiones en espacios de Hilbert. A lo largo del estudio, el esquema propuesto se valida sobre datos relacionados con bioseñales e imágenes como una alternativa para apoyar sistemas de apoyo diagnóstico y análisis objetivo basado en imágenes. De hecho, el marco introducido permite mejorar, en la mayoría de los casos, el rendimiento de sistemas de aprendizaje supervisado y no supervisado, favoreciendo la precisión de la tarea y la interpretabilidad de los datosDoctorad

    Neuroengineering of Clustering Algorithms

    Get PDF
    Cluster analysis can be broadly divided into multivariate data visualization, clustering algorithms, and cluster validation. This dissertation contributes neural network-based techniques to perform all three unsupervised learning tasks. Particularly, the first paper provides a comprehensive review on adaptive resonance theory (ART) models for engineering applications and provides context for the four subsequent papers. These papers are devoted to enhancements of ART-based clustering algorithms from (a) a practical perspective by exploiting the visual assessment of cluster tendency (VAT) sorting algorithm as a preprocessor for ART offline training, thus mitigating ordering effects; and (b) an engineering perspective by designing a family of multi-criteria ART models: dual vigilance fuzzy ART and distributed dual vigilance fuzzy ART (both of which are capable of detecting complex cluster structures), merge ART (aggregates partitions and lessens ordering effects in online learning), and cluster validity index vigilance in fuzzy ART (features a robust vigilance parameter selection and alleviates ordering effects in offline learning). The sixth paper consists of enhancements to data visualization using self-organizing maps (SOMs) by depicting in the reduced dimension and topology-preserving SOM grid information-theoretic similarity measures between neighboring neurons. This visualization\u27s parameters are estimated using samples selected via a single-linkage procedure, thereby generating heatmaps that portray more homogeneous within-cluster similarities and crisper between-cluster boundaries. The seventh paper presents incremental cluster validity indices (iCVIs) realized by (a) incorporating existing formulations of online computations for clusters\u27 descriptors, or (b) modifying an existing ART-based model and incrementally updating local density counts between prototypes. Moreover, this last paper provides the first comprehensive comparison of iCVIs in the computational intelligence literature --Abstract, page iv

    Validação de heterogeneidade estrutural em dados de Crio-ME por comitês de agrupadores

    Get PDF
    Orientadores: Fernando José Von Zuben, Rodrigo Villares PortugalDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Análise de Partículas Isoladas é uma técnica que permite o estudo da estrutura tridimensional de proteínas e outros complexos macromoleculares de interesse biológico. Seus dados primários consistem em imagens de microscopia eletrônica de transmissão de múltiplas cópias da molécula em orientações aleatórias. Tais imagens são bastante ruidosas devido à baixa dose de elétrons utilizada. Reconstruções 3D podem ser obtidas combinando-se muitas imagens de partículas em orientações similares e estimando seus ângulos relativos. Entretanto, estados conformacionais heterogêneos frequentemente coexistem na amostra, porque os complexos moleculares podem ser flexíveis e também interagir com outras partículas. Heterogeneidade representa um desafio na reconstrução de modelos 3D confiáveis e degrada a resolução dos mesmos. Entre os algoritmos mais populares usados para classificação estrutural estão o agrupamento por k-médias, agrupamento hierárquico, mapas autoorganizáveis e estimadores de máxima verossimilhança. Tais abordagens estão geralmente entrelaçadas à reconstrução dos modelos 3D. No entanto, trabalhos recentes indicam ser possível inferir informações a respeito da estrutura das moléculas diretamente do conjunto de projeções 2D. Dentre estas descobertas, está a relação entre a variabilidade estrutural e manifolds em um espaço de atributos multidimensional. Esta dissertação investiga se um comitê de algoritmos de não-supervisionados é capaz de separar tais "manifolds conformacionais". Métodos de "consenso" tendem a fornecer classificação mais precisa e podem alcançar performance satisfatória em uma ampla gama de conjuntos de dados, se comparados a algoritmos individuais. Nós investigamos o comportamento de seis algoritmos de agrupamento, tanto individualmente quanto combinados em comitês, para a tarefa de classificação de heterogeneidade conformacional. A abordagem proposta foi testada em conjuntos sintéticos e reais contendo misturas de imagens de projeção da proteína Mm-cpn nos estados "aberto" e "fechado". Demonstra-se que comitês de agrupadores podem fornecer informações úteis na validação de particionamentos estruturais independetemente de algoritmos de reconstrução 3DAbstract: Single Particle Analysis is a technique that allows the study of the three-dimensional structure of proteins and other macromolecular assemblies of biological interest. Its primary data consists of transmission electron microscopy images from multiple copies of the molecule in random orientations. Such images are very noisy due to the low electron dose employed. Reconstruction of the macromolecule can be obtained by averaging many images of particles in similar orientations and estimating their relative angles. However, heterogeneous conformational states often co-exist in the sample, because the molecular complexes can be flexible and may also interact with other particles. Heterogeneity poses a challenge to the reconstruction of reliable 3D models and degrades their resolution. Among the most popular algorithms used for structural classification are k-means clustering, hierarchical clustering, self-organizing maps and maximum-likelihood estimators. Such approaches are usually interlaced with the reconstructions of the 3D models. Nevertheless, recent works indicate that it is possible to infer information about the structure of the molecules directly from the dataset of 2D projections. Among these findings is the relationship between structural variability and manifolds in a multidimensional feature space. This dissertation investigates whether an ensemble of unsupervised classification algorithms is able to separate these "conformational manifolds". Ensemble or "consensus" methods tend to provide more accurate classification and may achieve satisfactory performance across a wide range of datasets, when compared with individual algorithms. We investigate the behavior of six clustering algorithms both individually and combined in ensembles for the task of structural heterogeneity classification. The approach was tested on synthetic and real datasets containing a mixture of images from the Mm-cpn chaperonin in the "open" and "closed" states. It is shown that cluster ensembles can provide useful information in validating the structural partitionings independently of 3D reconstruction methodsMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    Machine learning methods for the characterization and classification of complex data

    Get PDF
    This thesis work presents novel methods for the analysis and classification of medical images and, more generally, complex data. First, an unsupervised machine learning method is proposed to order anterior chamber OCT (Optical Coherence Tomography) images according to a patient's risk of developing angle-closure glaucoma. In a second study, two outlier finding techniques are proposed to improve the results of above mentioned machine learning algorithm, we also show that they are applicable to a wide variety of data, including fraud detection in credit card transactions. In a third study, the topology of the vascular network of the retina, considering it a complex tree-like network is analyzed and we show that structural differences reveal the presence of glaucoma and diabetic retinopathy. In a fourth study we use a model of a laser with optical injection that presents extreme events in its intensity time-series to evaluate machine learning methods to forecast such extreme events.El presente trabajo de tesis desarrolla nuevos métodos para el análisis y clasificación de imágenes médicas y datos complejos en general. Primero, proponemos un método de aprendizaje automático sin supervisión que ordena imágenes OCT (tomografía de coherencia óptica) de la cámara anterior del ojo en función del grado de riesgo del paciente de padecer glaucoma de ángulo cerrado. Luego, desarrollamos dos métodos de detección automática de anomalías que utilizamos para mejorar los resultados del algoritmo anterior, pero que su aplicabilidad va mucho más allá, siendo útil, incluso, para la detección automática de fraudes en transacciones de tarjetas de crédito. Mostramos también, cómo al analizar la topología de la red vascular de la retina considerándola una red compleja, podemos detectar la presencia de glaucoma y de retinopatía diabética a través de diferencias estructurales. Estudiamos también un modelo de un láser con inyección óptica que presenta eventos extremos en la serie temporal de intensidad para evaluar diferentes métodos de aprendizaje automático para predecir dichos eventos extremos.Aquesta tesi desenvolupa nous mètodes per a l’anàlisi i la classificació d’imatges mèdiques i dades complexes. Hem proposat, primer, un mètode d’aprenentatge automàtic sense supervisió que ordena imatges OCT (tomografia de coherència òptica) de la cambra anterior de l’ull en funció del grau de risc del pacient de patir glaucoma d’angle tancat. Després, hem desenvolupat dos mètodes de detecció automàtica d’anomalies que hem utilitzat per millorar els resultats de l’algoritme anterior, però que la seva aplicabilitat va molt més enllà, sent útil, fins i tot, per a la detecció automàtica de fraus en transaccions de targetes de crèdit. Mostrem també, com en analitzar la topologia de la xarxa vascular de la retina considerant-la una xarxa complexa, podem detectar la presència de glaucoma i de retinopatia diabètica a través de diferències estructurals. Finalment, hem estudiat un làser amb injecció òptica, el qual presenta esdeveniments extrems en la sèrie temporal d’intensitat. Hem avaluat diferents mètodes per tal de predir-los.Postprint (published version
    corecore