26,862 research outputs found

    Contingent task and motion planning under uncertainty for human–robot interactions

    Get PDF
    Manipulation planning under incomplete information is a highly challenging task for mobile manipulators. Uncertainty can be resolved by robot perception modules or using human knowledge in the execution process. Human operators can also collaborate with robots for the execution of some difficult actions or as helpers in sharing the task knowledge. In this scope, a contingent-based task and motion planning is proposed taking into account robot uncertainty and human–robot interactions, resulting a tree-shaped set of geometrically feasible plans. Different sorts of geometric reasoning processes are embedded inside the planner to cope with task constraints like detecting occluding objects when a robot needs to grasp an object. The proposal has been evaluated with different challenging scenarios in simulation and a real environment.Postprint (published version

    The Kinetic Activation-Relaxation Technique: A Powerful Off-lattice On-the-fly Kinetic Monte Carlo Algorithm

    Full text link
    Many materials science phenomena, such as growth and self-organisation, are dominated by activated diffusion processes and occur on timescales that are well beyond the reach of standard-molecular dynamics simulations. Kinetic Monte Carlo (KMC) schemes make it possible to overcome this limitation and achieve experimental timescales. However, most KMC approaches proceed by discretizing the problem in space in order to identify, from the outset, a fixed set of barriers that are used throughout the simulations, limiting the range of problems that can be addressed. Here, we propose a more flexible approach -- the kinetic activation-relaxation technique (k-ART) -- which lifts these constraints. Our method is based on an off-lattice, self-learning, on-the-fly identification and evaluation of activation barriers using ART and a topological description of events. The validity and power of the method are demonstrated through the study of vacancy diffusion in crystalline silicon.Comment: 5 pages, 4 figure

    Engineering a Conformant Probabilistic Planner

    Full text link
    We present a partial-order, conformant, probabilistic planner, Probapop which competed in the blind track of the Probabilistic Planning Competition in IPC-4. We explain how we adapt distance based heuristics for use with probabilistic domains. Probapop also incorporates heuristics based on probability of success. We explain the successes and difficulties encountered during the design and implementation of Probapop

    Data Structures for Task-based Priority Scheduling

    Full text link
    Many task-parallel applications can benefit from attempting to execute tasks in a specific order, as for instance indicated by priorities associated with the tasks. We present three lock-free data structures for priority scheduling with different trade-offs on scalability and ordering guarantees. First we propose a basic extension to work-stealing that provides good scalability, but cannot provide any guarantees for task-ordering in-between threads. Next, we present a centralized priority data structure based on kk-fifo queues, which provides strong (but still relaxed with regard to a sequential specification) guarantees. The parameter kk allows to dynamically configure the trade-off between scalability and the required ordering guarantee. Third, and finally, we combine both data structures into a hybrid, kk-priority data structure, which provides scalability similar to the work-stealing based approach for larger kk, while giving strong ordering guarantees for smaller kk. We argue for using the hybrid data structure as the best compromise for generic, priority-based task-scheduling. We analyze the behavior and trade-offs of our data structures in the context of a simple parallelization of Dijkstra's single-source shortest path algorithm. Our theoretical analysis and simulations show that both the centralized and the hybrid kk-priority based data structures can give strong guarantees on the useful work performed by the parallel Dijkstra algorithm. We support our results with experimental evidence on an 80-core Intel Xeon system

    Many-to-Many Graph Matching: a Continuous Relaxation Approach

    Get PDF
    Graphs provide an efficient tool for object representation in various computer vision applications. Once graph-based representations are constructed, an important question is how to compare graphs. This problem is often formulated as a graph matching problem where one seeks a mapping between vertices of two graphs which optimally aligns their structure. In the classical formulation of graph matching, only one-to-one correspondences between vertices are considered. However, in many applications, graphs cannot be matched perfectly and it is more interesting to consider many-to-many correspondences where clusters of vertices in one graph are matched to clusters of vertices in the other graph. In this paper, we formulate the many-to-many graph matching problem as a discrete optimization problem and propose an approximate algorithm based on a continuous relaxation of the combinatorial problem. We compare our method with other existing methods on several benchmark computer vision datasets.Comment: 1

    Attention and Anticipation in Fast Visual-Inertial Navigation

    Get PDF
    We study a Visual-Inertial Navigation (VIN) problem in which a robot needs to estimate its state using an on-board camera and an inertial sensor, without any prior knowledge of the external environment. We consider the case in which the robot can allocate limited resources to VIN, due to tight computational constraints. Therefore, we answer the following question: under limited resources, what are the most relevant visual cues to maximize the performance of visual-inertial navigation? Our approach has four key ingredients. First, it is task-driven, in that the selection of the visual cues is guided by a metric quantifying the VIN performance. Second, it exploits the notion of anticipation, since it uses a simplified model for forward-simulation of robot dynamics, predicting the utility of a set of visual cues over a future time horizon. Third, it is efficient and easy to implement, since it leads to a greedy algorithm for the selection of the most relevant visual cues. Fourth, it provides formal performance guarantees: we leverage submodularity to prove that the greedy selection cannot be far from the optimal (combinatorial) selection. Simulations and real experiments on agile drones show that our approach ensures state-of-the-art VIN performance while maintaining a lean processing time. In the easy scenarios, our approach outperforms appearance-based feature selection in terms of localization errors. In the most challenging scenarios, it enables accurate visual-inertial navigation while appearance-based feature selection fails to track robot's motion during aggressive maneuvers.Comment: 20 pages, 7 figures, 2 table

    The Activation-Relaxation Technique : ART nouveau and kinetic ART

    Get PDF
    The evolution of many systems is dominated by rare activated events that occur on timescale ranging from nanoseconds to the hour or more. For such systems, simulations must leave aside the full thermal description to focus specifically on mechanisms that generate a configurational change. We present here the activation relaxation technique (ART), an open-ended saddle point search algorithm, and a series of recent improvements to ART nouveau and kinetic ART, an ART-based on-the-fly off-lattice self-learning kinetic Monte Carlo method
    corecore