5,812 research outputs found

    Thermal evolution of hybrid stars within the framework of a nonlocal Nambu--Jona-Lasinio model

    Get PDF
    We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of non-linear relativistic nuclear field theory. For the quark phase we use a non-local extension of the SU(3) Nambu Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40 % deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around 1.4M1.4\, M_\odot would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of 1.4M1.4\, M_\odot.Comment: 10 pages, 7 figure

    Collectivity in small and large amplitude microscopic mean-field dynamic

    Full text link
    The time-dependent energy density functional with pairing allows to describe a large variety of phenomena from small to large amplitude collective motion. Here, we briefly summarize the recent progresses made in the field using the TD-BCS approach. A focus is made on the mapping of the microscopic mean-field dynamic to the macroscopic dynamic in collective space. A method is developed to extract the collective mass parameter from TD-EDF. Illustration is made on the fission of 258^{258}Fm. The collective mass and collective momentum associated to quadrupole deformation including non-adiabatic effects is estimated along the TD-EDF path. With these information, the onset of dissipation during fission is discussed.Comment: Proceeding of the XXII Nuclear Physics Workshop, Kazimierz, 2015, Polan

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Vadim Kuznetsov. Informal Biography by Eyes of His First Adviser

    Get PDF
    The paper is dedicated to the memory of prominent theoretical physicist and mathematician Dr. Vadim Kuznetsov who worked, in particular, in the fields of the nonlinear dynamics, separation of variables, integrability theory, special functions. It includes his short research biography, an account of the start of his research career and the list of publications.Comment: This is a contribution to the Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    A really simple approximation of smallest grammar

    Full text link
    In this paper we present a really simple linear-time algorithm constructing a context-free grammar of size O(g log (N/g)) for the input string, where N is the size of the input string and g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear assuming that the alphabet Sigma of the input string can be identified with numbers from 1,ldots, N^c for some constant c. Algorithms with such an approximation guarantee and running time are known, however all of them were non-trivial and their analyses were involved. The here presented algorithm computes the LZ77 factorisation and transforms it in phases to a grammar. In each phase it maintains an LZ77-like factorisation of the word with at most l factors as well as additional O(l) letters, where l was the size of the original LZ77 factorisation. In one phase in a greedy way (by a left-to-right sweep and a help of the factorisation) we choose a set of pairs of consecutive letters to be replaced with new symbols, i.e. nonterminals of the constructed grammar. We choose at least 2/3 of the letters in the word and there are O(l) many different pairs among them. Hence there are O(log N) phases, each of them introduces O(l) nonterminals to a grammar. A more precise analysis yields a bound O(l log(N/l)). As l \leq g, this yields the desired bound O(g log(N/g)).Comment: Accepted for CPM 201
    corecore