322 research outputs found

    Advanced Integral Equation and Hybrid Methods for the Efficient Analysis of General Waveguide and Antenna Structures

    Get PDF
    Three new numerical methods for the calculation of passive waveguide and antenna structures are presented in this work. They are designed to be used within a comprehensive hybrid CAD tool for the efficient analysis of those building blocks for which the fast mode-matching/2-D finite element technique cannot be applied. The advanced algorithms introduced here are doubly higher order, that is higher order basis functions are considered for current/field modeling whereas geometry discretization is performed with triangular/tetrahedral elements of higher polynomial degree

    Efficient computation of the magnetic polarizabiltiy tensor spectral signature using proper orthogonal decomposition

    Get PDF
    The identification of hidden conducting permeable objects from measurements of the perturbed magnetic field taken over a range of low frequencies is important in metal detection. Applications include identifying threat items in security screening at transport hubs, location of unexploded ordnance, and antipersonnel landmines in areas of former conflict, searching for items of archeological significance and recycling of valuable metals. The solution of the inverse problem, or more generally locating and classifying objects, has attracted considerable attention recently using polarizability tensors. The magnetic polarizability tensor (MPT) provides a characterization of a conducting permeable object using a small number of coefficients, has an explicit formula for the calculation of their coefficients, and a well understood frequency behavior, which we call its spectral signature. However, to compute such signatures, and build a library of them for object classification, requires the repeated solution of a transmission problem, which is typically accomplished approximately using a finite element discretization. To reduce the computational cost, we propose an efficient reduced order model (ROM) that further reduces the problem using a proper orthogonal decomposition for the rapid computation of MPT spectral signatures. Our ROM benefits from a posteriori error estimates of the accuracy of the predicted MPT coefficients with respect to those obtained with finite element solutions. These estimates can be computed cheaply during the online stage of the ROM allowing the ROM prediction to be certified. To further increase the efficiency of the computation of the MPT spectral signature, we provide scaling results, which enable an immediate calculation of the signature under changes in the object size or conductivity. We illustrate our approach by application to a range of homogenous and inhomogeneous conducting permeable objects

    Doctor of Philosophy

    Get PDF
    dissertationPartial differential equations (PDEs) are widely used in science and engineering to model phenomena such as sound, heat, and electrostatics. In many practical science and engineering applications, the solutions of PDEs require the tessellation of computational domains into unstructured meshes and entail computationally expensive and time-consuming processes. Therefore, efficient and fast PDE solving techniques on unstructured meshes are important in these applications. Relative to CPUs, the faster growth curves in the speed and greater power efficiency of the SIMD streaming processors, such as GPUs, have gained them an increasingly important role in the high-performance computing area. Combining suitable parallel algorithms and these streaming processors, we can develop very efficient numerical solvers of PDEs. The contributions of this dissertation are twofold: proposal of two general strategies to design efficient PDE solvers on GPUs and the specific applications of these strategies to solve different types of PDEs. Specifically, this dissertation consists of four parts. First, we describe the general strategies, the domain decomposition strategy and the hybrid gathering strategy. Next, we introduce a parallel algorithm for solving the eikonal equation on fully unstructured meshes efficiently. Third, we present the algorithms and data structures necessary to move the entire FEM pipeline to the GPU. Fourth, we propose a parallel algorithm for solving the levelset equation on fully unstructured 2D or 3D meshes or manifolds. This algorithm combines a narrowband scheme with domain decomposition for efficient levelset equation solving

    A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity

    Get PDF
    This paper introduces a new computational framework for the analysis of large strain fast solid dynamics. The paper builds upon previous work published by the authors (Gil etal., 2014) [48], where a first order system of hyperbolic equations is introduced for the simulation of isothermal elastic materials in terms of the linear momentum, the deformation gradient and its Jacobian as unknown variables. In this work, the formulation is further enhanced with four key novelties. First, the use of a new geometric conservation law for the co-factor of the deformation leads to an enhanced mixed formulation, advantageous in those scenarios where the co-factor plays a dominant role. Second, the use of polyconvex strain energy functionals enables the definition of generalised convex entropy functions and associated entropy fluxes for solid dynamics problems. Moreover, the introduction of suitable conjugate entropy variables enables the derivation of a symmetric system of hyperbolic equations, dual of that expressed in terms of conservation variables. Third, the new use of a tensor cross product [61] greatly facilitates the algebraic manipulations of expressions involving the co-factor of the deformation. Fourth, the development of a stabilised Petrov-Galerkin framework is presented for both systems of hyperbolic equations, that is, when expressed in terms of either conservation or entropy variables. As an example, a polyconvex Mooney-Rivlin material is used and, for completeness, the eigen-structure of the resulting system of equations is studied to guarantee the existence of real wave speeds. Finally, a series of numerical examples is presented in order to assess the robustness and accuracy of the new mixed methodology, benchmarking it against an ample spectrum of alternative numerical strategies, including implicit multi-field Fraeijs de Veubeke-Hu-Washizu variational type approaches and explicit cell and vertex centred Finite Volume schemes

    Parallel Fast Isogeometric Solvers for Explicit Dynamics

    Get PDF
    This paper presents a parallel implementation of the fast isogeometric solvers for explicit dynamics for solving non-stationary time-dependent problems. The algorithm is described in pseudo-code. We present theoretical estimates of the computational and communication complexities for a single time step of the parallel algorithm. The computational complexity is O(p^6 N/c t_comp) and communication complexity is O(N/(c^(2/3)t_comm) where p denotes the polynomial order of B-spline basis with Cp-1 global continuity, N denotes the number of elements and c is number of processors forming a cube, t_comp refers to the execution time of a single operation, and t_comm refers to the time of sending a single datum. We compare theoretical estimates with numerical experiments performed on the LONESTAR Linux cluster from Texas Advanced Computing Center, using 1 000 processors. We apply the method to solve nonlinear flows in highly heterogeneous porous media
    corecore