5 research outputs found

    Complex oscillations with multiple timescales - Application to neuronal dynamics

    Get PDF
    The results gathered in this thesis deal with multiple time scale dynamical systems near non-hyperbolic points, giving rise to canard-type solutions, in systems of dimension 2, 3 and 4. Bifurcation theory and numerical continuation methods adapted for such systems are used to analyse canard cycles as well as canard-induced complex oscillations in three-dimensional systems. Two families of such complex oscillations are considered: mixed-mode oscillations (MMOs) in systems with two slow variables, and bursting oscillations in systems with two fast variables. In the last chapter, we present recent results on systems with two slow and two fast variables, where both MMO-type dynamics and bursting-type dynamics can arise and where complex oscillations are also organised by canard solutions. The main application area that we consider here is that of neuroscience, more precisely low-dimensional point models of neurons displaying both sub-threshold and spiking behaviour. We focus on analysing how canard objects allow to control the oscillatory patterns observed in these neuron models, in particular the crossings of excitability thresholds

    Dynamics and Synchrony of Pancreatic <i>β</i>-cells and Islets

    Get PDF

    Continuation and bifurcation analyses of a periodically forced slow-fast system

    Get PDF

    Book of abstracts

    Get PDF

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore