1,015 research outputs found

    New Techniques to Reduce the Execution Time of Functional Test Programs

    Get PDF
    The compaction of test programs for processor-based systems is of utmost practical importance: Software-Based Self-Test (SBST) is nowadays increasingly adopted, especially for in-field test of safety-critical applications, and both the size and the execution time of the test are critical parameters. However, while compacting the size of binary test sequences has been thoroughly studied over the years, the reduction of the execution time of test programs is still a rather unexplored area of research. This paper describes a family of algorithms able to automatically enhance an existing test program, reducing the time required to run it and, as a side effect, its size. The proposed solutions are based on instruction removal and restoration, which is shown to be computationally more efficient than instruction removal alone. Experimental results demonstrate the compaction capabilities, and allow analyzing computational costs and effectiveness of the different algorithms

    Test Cost Reduction for Logic Circuits——Reduction of Test Data Volume and Test Application Time——

    Get PDF
    論理回路の大規模化とともに,テストコストの増大が深刻な問題となっている.特に大規模な論理回路では,テストデータ量やテスト実行時間の削減が,テストコスト削減の重要な課題である.本論文では,高い故障検出率のテストパターンをできるだけ少ないテストベクトル数で実現するためのテストコンパクション技術,付加ハードウェアによるテストデータの展開・伸長を前提に圧縮を行うテストコンプレッション技術,及び,スキャン設計回路におけるテスト実行時間削減技術について概説する

    High Quality Compact Delay Test Generation

    Get PDF
    Delay testing is used to detect timing defects and ensure that a circuit meets its timing specifications. The growing need for delay testing is a result of the advances in deep submicron (DSM) semiconductor technology and the increase in clock frequency. Small delay defects that previously were benign now produce delay faults, due to reduced timing margins. This research focuses on the development of new test methods for small delay defects, within the limits of affordable test generation cost and pattern count. First, a new dynamic compaction algorithm has been proposed to generate compacted test sets for K longest paths per gate (KLPG) in combinational circuits or scan-based sequential circuits. This algorithm uses a greedy approach to compact paths with non-conflicting necessary assignments together during test generation. Second, to make this dynamic compaction approach practical for industrial use, a recursive learning algorithm has been implemented to identify more necessary assignments for each path, so that the path-to-test-pattern matching using necessary assignments is more accurate. Third, a realistic low cost fault coverage metric targeting both global and local delay faults has been developed. The metric suggests the test strategy of generating a different number of longest paths for each line in the circuit while maintaining high fault coverage. The number of paths and type of test depends on the timing slack of the paths under this metric. Experimental results for ISCAS89 benchmark circuits and three industry circuits show that the pattern count of KLPG can be significantly reduced using the proposed methods. The pattern count is comparable to that of transition fault test, while achieving higher test quality. Finally, the proposed ATPG methodology has been applied to an industrial quad-core microprocessor. FMAX testing has been done on many devices and silicon data has shown the benefit of KLPG test

    UA2TPG: An untestability analyzer and test pattern generator for SEUs in the configuration memory of SRAM-based FPGAs

    Get PDF
    This paper presents UA2TPG, a static analysis tool for the untestability proof and automatic test pattern generation for SEUs in the configuration memory of SRAM-based FPGA systems. The tool is based on the model-checking verification technique. An accurate fault model for both logic components and routing structures is adopted. Experimental results show that many circuits have a significant number of untestable faults, and their detection enables more efficient test pattern generation and on-line testing. The tool is mainly intended to support on-line testing of critical components in FPGA fault-tolerant systems
    corecore