48 research outputs found

    Measuring the Phase Variation of a DOCSIS 3.1 Full Duplex Channel

    Get PDF
    Including a Full Duplex option into DOCSIS introduces several problems. One of the more troublesome issues is the presence of a strong self interference signal that leaks from the transmit side to the receive side of a cable node. This self interference is caused by echoes in the channel that translate the forward travelling transmit signals into a reverse travelling signal, as well as, by leakage from the hybrid coupler used to couple the upstream and downstream signals. To suppress this self interference an echo canceller is implemented to remove the unwanted interference from the received signal. Unfortunately with the high rates of data transmission used in modern day CATV networks the echo canceller needs tremendous precision. A major concern in the implementation of Full Duplex into DOCSIS is if the channels used are even very slightly time varying. The echos in such channels change with time and can be difficult for the echo canceller to track. Changes in the response of the channel cause the echo profile of the network to shift and the echo canceler to re-adapt to the new channel response. The issue with this changing response is that it is possible for the channel to change faster than the echo canceller can adapt, resulting in the interference becoming unacceptably high. Since the channel is a physical network of coaxial cables often exposed to the environment, its propagation properties can be affected by wind swaying pole mounted cables, or by rapid heating from the sun, or sudden shifts in the load of the network. With information on how the physical properties of the cable changes, the engineers designing the echo canceller can know how fast the canceller must adapt to changes and also have a better measure of how reliable its echo cancellation will be. In this thesis the stability of the echo profile of the channel is measured. It is shown that the property of the channel with the greatest potential to rapidly change and cause noise after echo cancellation is the phase response of the channel. Due to this, the approach of this thesis is to measure the fluctuations in the phase of the channel response of a CATV network constructed in the lab. To measure the fluctuations in the phase response of the channel, a PLL (Phase Locked Loop) based circuit is designed and built on an FPGA (Field Programmable Gate Array) and connected to a model of a simple CATV network. The PLL circuit used to measure the phase fluctuations of the channel is designed to be able to measure changes occurring faster than 0.1 Hz and with a power higher than 107V210^{-7} \: V^2. The circuit is able to capture data from the channel over a period of 90 seconds. Using this phase variation measurement circuit a series of experiments were performed on a model CATV DOCSIS network. It was found that many physical disturbances to the network had the effect of rapidly shifting the phase response of the network. Heating the cables in the network was found to shift the phase response upwards of 20000μ20000\:\muradians. Flexing the cables in the network was found to have a peak phase variation of 8000μ8000\: \muradians with similar effects found from walking over cables. Overall, it was clear that physical effects on the network had the propensity to rapidly shift the network response. Any echo canceller that is designed in the future will have to consider these effects when reporting the cancellation that it is able to achieve

    Algorithms and structures for long adaptive echo cancellers

    Get PDF
    The main theme of this thesis is adaptive echo cancellation. Two novel independent approaches are proposed for the design of long echo cancellers with improved performance. In the first approach, we present a novel structure for bulk delay estimation in long echo cancellers which considerably reduces the amount of excess error. The miscalculation of the delay between the near-end and the far-end sections is one of the main causes of this excess error. Two analyses, based on the Least Mean Squares (LMS) algorithm, are presented where certain shapes for the transitions between the end of the near-end section and the beginning of the far-end one are considered. Transient and steady-state behaviours and convergence conditions for the proposed algorithm are studied. Comparisons between the algorithms developed for each transition are presented, and the simulation results agree well with the theoretical derivations. In the second approach, a generalised performance index is proposed for the design of the echo canceller. The proposed algorithm consists of simultaneously applying the LMS algorithm to the near-end section and the Least Mean Fourth (LMF) algorithm to the far-end section of the echo canceller. This combination results in a substantial improvement of the performance of the proposed scheme over both the LMS and other algorithms proposed for comparison. In this approach, the proposed algorithm will be henceforth called the Least Mean Mixed-Norm (LMMN) algorithm. The advantages of the LMMN algorithm over previously reported ones are two folds: it leads to a faster convergence and results in a smaller misadjustment error. Finally, the convergence properties of the LMMN algorithm are derived and the simulation results confirm the superior performance of this proposed algorithm over other well known algorithms

    Fast initialization of Nyquist echo cancellers using circular convolution technique

    Get PDF
    For full-duplex high-speed data transmission over the two-wire line using the same frequency band, it is required to sufficiently suppress the echo. The use of a conventional adaptation method may take a long time to train the echo canceler. Fast training can be achieved by initializing the coefficients of the echo canceler with an estimate of the impulse response of the echo path. In this letter, we propose a method for fast initialization of the echo canceler by using a circular convolution technique. The proposed method enables the use of real-valued training signals instead of complex-valued ones, resulting in significant reduction of the initialization time as well as the implementation complexity. Finally, the performance of the proposed method is analyzed and verified by computer simulation

    Adaptation algorithms for data echo cancellation using nonquadratic cost functions

    Get PDF
    Adaptation algorithms for data echo cancellation using nonquadratic cost function

    Estimation and detection of transmission line characteristics in the copper access network

    Get PDF
    The copper access-network operators face the challenge of developing and maintaining cost-effective digital subscriber line (DSL) services that are competitive to other broadband access technologies. The way forward is dictated by the demand of ever increasing data rates on the twisted-pair copper lines. To meet this demand, a relocation of the DSL transceivers in cabinets closer to the customers are often necessary combined with a joint expansion of the accompanying optical-fiber backhaul network. The equipment of the next generation copper network are therefore becoming more scattered and geographically distributed, which increases the requirements of automated line qualification with fault detection and localization. This scenario is addressed in the first five papers of this dissertation where the focus is on estimation and detection of transmission line characteristics in the copper access network. The developed methods apply model-based optimization with an emphasis on using low-order modeling and a priori information of the given problem. More specifically, in Paper I a low-order and causal cable model is derived based on the Hilbert transform. This model is successfully applied in three contributions of this dissertation. In Paper II, a class of low-complexity unbiased estimators for the frequency-dependent characteristic impedance is presented that uses one-port measurements only. The so obtained characteristic impedance paves the way for enhanced time domain reflectometry (a.k.a. TDR) on twisted-pair lines. In Paper III, the problem of estimating a nonhomogeneous and dispersive transmission line is investigated and a space-frequency optimization approach is developed for the DSL application. The accompanying analysis shows which parameters are of interest to estimate and further suggests the introduction of the concept capacitive length that overcomes the necessity of a priori knowledge of the physical line length. In Paper IV, two methods are developed for detection and localization of load coils present in so-called loaded lines. In Paper V, line topology identification is addressed with varying degree of a priori information. In doing so, a model-based optimization approach is employed that utilizes multi-objective evolutionary computation based on one/two-port measurements. A complement to transceiver relocation that potentially enhances the total data throughput in the copper access network is dynamic spectrum management (DSM). This promising multi-user transmission technique aims at maximizing the transmission rates, and/or minimizing the power consumption, by mitigating or cancelling the dominating crosstalk interference between twisted-pair lines in the same cable binder. Hence the spectral utilization is improved by optimizing the transmit signals in order to minimize the crosstalk interference. However, such techniques rely on accurate information of the (usually) unknown crosstalk channels. This issue is the main focus of Paper VI and VII of this dissertation in which Paper VI deals with estimation of the crosstalk channels between twisted-pair lines. More specifically, an unbiased estimator for the square-magnitude of the crosstalk channels is derived from which a practical procedure is developed that can be implemented with standardized DSL modems already installed in the copper access network. In Paper VII the impact such a non-ideal estimator has on the performance of DSM is analyzed and simulated. Finally, in Paper VIII a novel echo cancellation algorithm for DMT-based DSL modems is presented

    FFT and FIR Filter implementations for the DSL MODEMS

    Get PDF
    Broad band digital communication that operates over a standard copper wires. It requires the DSL modems which splits the transmissions into 2 frequency bands. The lower frequencies for voice and the higher frequencies for digital data (internet) in order to transmit the data to larger distances through a copper cable we need modulation techniques. Generally in this DSL modems modulation used is QAM technique. The output of the QAM is complex data this complex data we cannot transfer directly through a copper cable because the data should be in time domain or otherwise the phase of the data which is in frequency domain can be lost, in copper cable so this data should be converted in time domain by using IDFT technique. As IDFT requires more number of complex multiplications and more number of complex additions in comparison to IFFT so to reduce the additions and multiplications IFFT technique is used. At the receiver side we can retrieve the same data by using FFT technique. In this section the implemented FFT architecture is fully efficient and this architecture will require less area. And before we have to transmit through the copper line we have to do interpolation or decimation by using the Filtering operation. The implemented poly phase architecture for the filtering is fully efficient, symmetrical and it requires less number of multipliers
    corecore