1,388 research outputs found

    Fast ConvNets Using Group-wise Brain Damage

    Full text link
    We revisit the idea of brain damage, i.e. the pruning of the coefficients of a neural network, and suggest how brain damage can be modified and used to speedup convolutional layers. The approach uses the fact that many efficient implementations reduce generalized convolutions to matrix multiplications. The suggested brain damage process prunes the convolutional kernel tensor in a group-wise fashion by adding group-sparsity regularization to the standard training process. After such group-wise pruning, convolutions can be reduced to multiplications of thinned dense matrices, which leads to speedup. In the comparison on AlexNet, the method achieves very competitive performance

    Mutual Exclusivity Loss for Semi-Supervised Deep Learning

    Full text link
    In this paper we consider the problem of semi-supervised learning with deep Convolutional Neural Networks (ConvNets). Semi-supervised learning is motivated on the observation that unlabeled data is cheap and can be used to improve the accuracy of classifiers. In this paper we propose an unsupervised regularization term that explicitly forces the classifier's prediction for multiple classes to be mutually-exclusive and effectively guides the decision boundary to lie on the low density space between the manifolds corresponding to different classes of data. Our proposed approach is general and can be used with any backpropagation-based learning method. We show through different experiments that our method can improve the object recognition performance of ConvNets using unlabeled data.Comment: 5 pages, 1 figures, ICIP 201

    Exemplar Based Deep Discriminative and Shareable Feature Learning for Scene Image Classification

    Full text link
    In order to encode the class correlation and class specific information in image representation, we propose a new local feature learning approach named Deep Discriminative and Shareable Feature Learning (DDSFL). DDSFL aims to hierarchically learn feature transformation filter banks to transform raw pixel image patches to features. The learned filter banks are expected to: (1) encode common visual patterns of a flexible number of categories; (2) encode discriminative information; and (3) hierarchically extract patterns at different visual levels. Particularly, in each single layer of DDSFL, shareable filters are jointly learned for classes which share the similar patterns. Discriminative power of the filters is achieved by enforcing the features from the same category to be close, while features from different categories to be far away from each other. Furthermore, we also propose two exemplar selection methods to iteratively select training data for more efficient and effective learning. Based on the experimental results, DDSFL can achieve very promising performance, and it also shows great complementary effect to the state-of-the-art Caffe features.Comment: Pattern Recognition, Elsevier, 201
    • …
    corecore