3,077 research outputs found

    Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms

    Get PDF
    We present a technical survey on the state of the art approaches in data reduction and the coreset framework. These include geometric decompositions, gradient methods, random sampling, sketching and random projections. We further outline their importance for the design of streaming algorithms and give a brief overview on lower bounding techniques

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure

    \v{C}ech-Delaunay gradient flow and homology inference for self-maps

    Full text link
    We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspace of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for \v{C}ech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive \v{C}ech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems.Comment: 22 pages, 8 figure
    corecore