19,885 research outputs found

    Indexing large genome collections on a PC

    Full text link
    Motivation: The availability of thousands of invidual genomes of one species should boost rapid progress in personalized medicine or understanding of the interaction between genotype and phenotype, to name a few applications. A key operation useful in such analyses is aligning sequencing reads against a collection of genomes, which is costly with the use of existing algorithms due to their large memory requirements. Results: We present MuGI, Multiple Genome Index, which reports all occurrences of a given pattern, in exact and approximate matching model, against a collection of thousand(s) genomes. Its unique feature is the small index size fitting in a standard computer with 16--32\,GB, or even 8\,GB, of RAM, for the 1000GP collection of 1092 diploid human genomes. The solution is also fast. For example, the exact matching queries are handled in average time of 39\,Îź\mus and with up to 3 mismatches in 373\,Îź\mus on the test PC with the index size of 13.4\,GB. For a smaller index, occupying 7.4\,GB in memory, the respective times grow to 76\,Îź\mus and 917\,Îź\mus. Availability: Software and Suuplementary material: \url{http://sun.aei.polsl.pl/mugi}

    String Indexing for Patterns with Wildcards

    Get PDF
    We consider the problem of indexing a string tt of length nn to report the occurrences of a query pattern pp containing mm characters and jj wildcards. Let occocc be the number of occurrences of pp in tt, and σ\sigma the size of the alphabet. We obtain the following results. - A linear space index with query time O(m+σjlog⁥log⁥n+occ)O(m+\sigma^j \log \log n + occ). This significantly improves the previously best known linear space index by Lam et al. [ISAAC 2007], which requires query time Θ(jn)\Theta(jn) in the worst case. - An index with query time O(m+j+occ)O(m+j+occ) using space O(σk2nlog⁥klog⁥n)O(\sigma^{k^2} n \log^k \log n), where kk is the maximum number of wildcards allowed in the pattern. This is the first non-trivial bound with this query time. - A time-space trade-off, generalizing the index by Cole et al. [STOC 2004]. We also show that these indexes can be generalized to allow variable length gaps in the pattern. Our results are obtained using a novel combination of well-known and new techniques, which could be of independent interest

    Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts

    Full text link
    We study the approximate string matching and regular expression matching problem for the case when the text to be searched is compressed with the Ziv-Lempel adaptive dictionary compression schemes. We present a time-space trade-off that leads to algorithms improving the previously known complexities for both problems. In particular, we significantly improve the space bounds, which in practical applications are likely to be a bottleneck

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver

    Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation

    Get PDF
    Given a static reference string RR and a source string SS, a relative compression of SS with respect to RR is an encoding of SS as a sequence of references to substrings of RR. Relative compression schemes are a classic model of compression and have recently proved very successful for compressing highly-repetitive massive data sets such as genomes and web-data. We initiate the study of relative compression in a dynamic setting where the compressed source string SS is subject to edit operations. The goal is to maintain the compressed representation compactly, while supporting edits and allowing efficient random access to the (uncompressed) source string. We present new data structures that achieve optimal time for updates and queries while using space linear in the size of the optimal relative compression, for nearly all combinations of parameters. We also present solutions for restricted and extended sets of updates. To achieve these results, we revisit the dynamic partial sums problem and the substring concatenation problem. We present new optimal or near optimal bounds for these problems. Plugging in our new results we also immediately obtain new bounds for the string indexing for patterns with wildcards problem and the dynamic text and static pattern matching problem
    • …
    corecore