33 research outputs found

    Convex relaxation of mixture regression with efficient algorithms

    Get PDF
    We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression models. Although our relaxation involves a semidefinite matrix variable, we reformulate the problem to eliminate the need for general semidefinite programming. In particular, we provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating steps of closed-form updates. We evaluate the methods against Expectation-Maximization in a real problem of motion segmentation from video data

    Quantifying and minimizing risk of conflict in social networks

    Get PDF
    Controversy, disagreement, conflict, polarization and opinion divergence in social networks have been the subject of much recent research. In particular, researchers have addressed the question of how such concepts can be quantified given people’s prior opinions, and how they can be optimized by influencing the opinion of a small number of people or by editing the network’s connectivity. Here, rather than optimizing such concepts given a specific set of prior opinions, we study whether they can be optimized in the average case and in the worst case over all sets of prior opinions. In particular, we derive the worst-case and average-case conflict risk of networks, and we propose algorithms for optimizing these. For some measures of conflict, these are non-convex optimization problems with many local minima. We provide a theoretical and empirical analysis of the nature of some of these local minima, and show how they are related to existing organizational structures. Empirical results show how a small number of edits quickly decreases its conflict risk, both average-case and worst-case. Furthermore, it shows that minimizing average-case conflict risk often does not reduce worst-case conflict risk. Minimizing worst-case conflict risk on the other hand, while computationally more challenging, is generally effective at minimizing both worst-case as well as average-case conflict risk

    Convex modeling with priors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2006.Includes bibliographical references (leaves 159-169).As the study of complex interconnected networks becomes widespread across disciplines, modeling the large-scale behavior of these systems becomes both increasingly important and increasingly difficult. In particular, it is of tantamount importance to utilize available prior information about the system's structure when building data-driven models of complex behavior. This thesis provides a framework for building models that incorporate domain specific knowledge and glean information from unlabeled data points. I present a methodology to augment standard methods in statistical regression with priors. These priors might include how the output series should behave or the specifics of the functional form relating inputs to outputs. My approach is optimization driven: by formulating a concise set of goals and constraints, approximate models may be systematically derived. The resulting approximations are convex and thus have only global minima and can be solved efficiently. The functional relationships amongst data are given as sums of nonlinear kernels that are expressive enough to approximate any mapping. Depending on the specifics of the prior, different estimation algorithms can be derived, and relationships between various types of data can be discovered using surprisingly few examples.(cont.) The utility of this approach is demonstrated through three exemplary embodiments. When the output is constrained to be discrete, a powerful set of algorithms for semi-supervised classification and segmentation result. When the output is constrained to follow Markovian dynamics, techniques for nonlinear dimensionality reduction and system identification are derived. Finally, when the output is constrained to be zero on a given set and non-zero everywhere else, a new algorithm for learning latent constraints in high-dimensional data is recovered. I apply the algorithms derived from this framework to a varied set of domains. The dissertation provides a new interpretation of the so-called Spectral Clustering algorithms for data segmentation and suggests how they may be improved. I demonstrate the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. Lastly, I discuss empirical methods to detect conserved quantities and learn constraints defining data sets.by Benjamin Recht.Ph.D

    New alternatives for k-means clustering

    Get PDF

    Approximating Spectral Clustering via Sampling: a Review

    Get PDF
    International audienceSpectral clustering refers to a family of well-known unsupervised learning algorithms. Rather than attempting to cluster points in their native domain, one constructs a (usually sparse) similarity graph and computes the principal eigenvec-tors of its Laplacian. The eigenvectors are then interpreted as transformed points and fed into a k-means clustering algorithm. As a result of this non-linear transformation , it becomes possible to use a simple centroid-based algorithm in order to identify non-convex clusters, something that was otherwise impossible. Unfortunately , what makes spectral clustering so successful is also its Achilles heel: forming a graph and computing its dominant eigenvectors can be computationally prohibitive when dealing with more that a few tens of thousands of points. In this chapter, we review the principal research efforts aiming to reduce this computational cost. We focus on methods that come with a theoretical control on the clustering performance and incorporate some form of sampling in their operation. Such methods abound in the machine learning, numerical linear algebra, and graph signal processing literature and, amongst others, include Nyström-approximation, landmarks, coarsening, coresets, and compressive spectral clustering. We present the approximation guarantees available for each and discuss practical merits and limitations. Surprisingly, despite the breadth of the literature explored, we conclude that there is still a gap between theory and practice: the most scalable methods are only intuitively motivated or loosely controlled, whereas those that come with end-to-end guarantees rely on strong assumptions or enable a limited gain of computation time

    Approximating Spectral Clustering via Sampling: a Review

    Get PDF
    Spectral clustering refers to a family of unsupervised learning algorithms that compute a spectral embedding of the original data based on the eigenvectors of a similarity graph. This non-linear transformation of the data is both the key of these algorithms' success and their Achilles heel: forming a graph and computing its dominant eigenvectors can indeed be computationally prohibitive when dealing with more that a few tens of thousands of points. In this paper, we review the principal research efforts aiming to reduce this computational cost. We focus on methods that come with a theoretical control on the clustering performance and incorporate some form of sampling in their operation. Such methods abound in the machine learning, numerical linear algebra, and graph signal processing literature and, amongst others, include Nystr\"om-approximation, landmarks, coarsening, coresets, and compressive spectral clustering. We present the approximation guarantees available for each and discuss practical merits and limitations. Surprisingly, despite the breadth of the literature explored, we conclude that there is still a gap between theory and practice: the most scalable methods are only intuitively motivated or loosely controlled, whereas those that come with end-to-end guarantees rely on strong assumptions or enable a limited gain of computation time

    A Tutorial on Spectral Clustering

    Full text link
    In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed
    corecore