1,924 research outputs found

    On-line monitoring of the transesterification reaction between triglycerides and ethanol using near infrared spectroscopy combined with gas chromatography

    Get PDF
    Many analytical procedures have been developed to determine the composition of reaction mixtures during transesterification of vegetable oils with alcohols. However, despite their accuracy, these methods are time consuming and cannot be easily used for on-line monitoring. In this work, a fast analytical method was developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol using Near InfraRed spectroscopy and a multivariate approach. The reactions were monitored through sequential scans of the reaction medium with a probe in a one-liter batch reactor without collecting and preparing samples. To calibrate the NIR analytical method, gas chromatography-flame ionization detection was used as a reference method. The method was validated by studying the kinetics of the EtONa-catalyzed transesterification reaction. Activation energy (51.0 kJ/mol) was also determined by considering a pseudo second order kinetics model

    Power system applications of fiber optics

    Get PDF
    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described

    MATLAB

    Get PDF
    This excellent book represents the final part of three-volumes regarding MATLAB-based applications in almost every branch of science. The book consists of 19 excellent, insightful articles and the readers will find the results very useful to their work. In particular, the book consists of three parts, the first one is devoted to mathematical methods in the applied sciences by using MATLAB, the second is devoted to MATLAB applications of general interest and the third one discusses MATLAB for educational purposes. This collection of high quality articles, refers to a large range of professional fields and can be used for science as well as for various educational purposes

    A framework for enhancing process understanding using multivariate tools on commercial batch process data

    Get PDF
    EngD ThesisA lot of effort is made by pharmaceutical companies on the research and development of new pharmaceutical products and processes using the latest in quality by design tools, and process analytical technologies. Older pharmaceutical processes that were developed without the use of these tools are, however, somewhat neglected. Significant quantities of process data are routinely collected and stored but the information contained within this data is not extracted. Extensive literature on multivariate statistical process monitoring and control exists for exploring both batch and continuous process data. However, these methodologies rely on data from processes that are relatively well understood or controlled. Many industrial processes show batch to batch variability, which may be tolerated as it is not detrimental to the quality of the product, and the impact of this variability is not fully understood. The thesis presents a framework for exploring historical batch process data, to extract insights on where process control can be improved. The challenges presented with commercial process data are discussed. Multivariate tools such as multi-way principal component analysis are used to investigate variability in process data. The framework presented discusses the pre-processing steps necessary with batch process data, followed by outlier detection, and finally multivariate modelling of the data to identify where the process could benefit from improved understanding and control. This framework is demonstrated through the application to commercial process data from the active pharmaceutical drug substance manufacturing process of spironolactone at Piramal Healthcare, Morpeth, UK. In this case study, the process exhibits variability in drying times which traditional univariate data analysis has not been able to solve. The results demonstrated some of the challenges the use of the available data from commercial processes. Although the results from the multivariate data analysis did not show a significant statistical difference between the batches with long and short drying times, small differences were observed between these two groups. Further analysis of the crystallization process using infrared spectroscopic techniques which identified a potential root cause to the extended drying time.This EngD project was supported by the Engineering and Physical Sciences Research Council (EPSRC) and Piramal Healthcare, Morpeth

    Impulse TDR and its Application to Characterisation of Antennas

    Get PDF
    Passive microwave systems are traditionally characterised in the frequency-domain with a vector network analyser (VNA). The measurement of antennas typically takes place in an anechoic chamber where the interference from spurious reflections and outside noise is minimised. Despite the high level of accuracy achieved with this approach, such facilities have high costs associated with them. Recent publications have demonstrated the characterisation of antennas using a step-function time domain reflectometer (TDR) along with frequency-domain processing techniques. Localisation of the measurement in time prior to transformation allows for the dismissal of unwanted spurious reflections, eliminating the need for an anechoic chamber. An alternative technique is proposed whereby an impulse generator is employed in place of the step generator in a TDR. The advantage conferred by "impulse TDR" (ITDR) is that more energy is available at higher frequencies than with conventional step TDR, leading to a higher bandwidth and signal-to-noise ratio (SNR). The theoretical result is compared with measurement

    Representation of 3-h Offshore Short-Crested Wave Field in the Fully Nonlinear Potential Flow Model REEF3D::FNPF

    Get PDF
    Stochastic wave properties are crucial for the design of offshore structures. Short-crested seas are commonly seen at the sites of offshore structures, especially during storm events. A long time duration is required in order to obtain the statistical properties, which is challenging for numerical simulations. In this scenario, a potential flow solver is ideal due to its computational efficiency. A procedure of reproducing accurate short-crested sea states using the open-source fully nonlinear potential flow model REEF3D::FNPF is presented in the paper. The procedure examines the sensitivity of the resolutions in space and time as well as the arrangements of wave gauge arrays. A narrow band power spectrum and a mildly spreading directional spreading function are simulated, and an equal energy method is used to generate input waves and avoid phase-locking. REEF3D::FNPF solves the Laplace equation together with the boundary conditions using a finite difference method. A sigma grid is used in the vertical direction and the vertical grid clustering follows the principle of constant truncation error. High-order discretization methods are implemented in space and time. Message passing interface is used for high performance computation using multiple processors. Three-hour simulations are performed in full-scale at a hypothetic offshore site with constant water depth. The significant wave height, peak period, kurtosis, skewness and ergodicity are examined in the numerically generated wave field. The stochastic wave properties in the numerical wave tank (NWT) using REEF3D::FNPF match the input wave conditions with high fidelity.acceptedVersio

    Process development using oscillatory baffled mesoreactors

    Get PDF
    PhD ThesisThe mesoscale oscillatory baffled reactor (meso-OBR) is a flow chemistry platform whose niche is the ability to convert long residence time batch processes to continuous processes. This reactor can rapidly screen reaction kinetics or optimise a reaction in flow with minimal waste. In this work, several areas were identified that could be addressed to broaden the applicability of this platform. Four main research themes were subsequently formulated and explored: (I) development of deeper understanding of the fluid mechanics in meso-OBRs, (II) development of a new hybrid heat pipe meso-OBR for improved thermal management, (III) further improvement of continuous screening using meso-OBRs by removing the solvent and employing better experiment design methodologies, and (IV) exploration of 3D printing for rapid reactor development. I. The flow structures in a meso-OBR containing different helical baffle geometries were studied using computational fluid dynamics simulations, validated by particle image velocimetry (PIV) experiments for the first time. It was demonstrated, using new quantification methods for the meso-OBR, that when using helical baffles swirling is responsible for providing a wider operating window for plug flow than other baffle designs. Further, a new flow regime resembling a Taylor-Couette flow was discovered that further improved the plug flow response. This new double vortex regime could conceivably improve multiphase mixing and enable flow measurements (e.g. using thermocouples inside the reactor) to be conducted without degrading the mixing condition. This work also provides a new framework for validating simulated OBR flows using PIV, by quantitatively comparing turbulent flow features instead of qualitatively comparing average velocity fields. II. A new hybrid heat pipe meso-OBR (HPOBR) was prototyped to provide better thermal control of the meso-OBR by exploiting the rapid and isothermal properties of the heat pipe. This new HPOBR was compared with a jacketed meso-OBR (JOBR) for the thermal control of an exothermic imination reaction conducted without a solvent. Without a solvent or thermal control scheme, this reaction exceeded the boiling point of one of the reactants. A central composite experiment design explored the effects of reactant net flow rate, oscillation intensity and cooling capacity on the thermal and chemical response of the reaction. The HPOBR was able to passively control the temperature below the boiling point of the reactant at all conditions through heat spreading. Overall, a combined 260-fold improvement in throughput was demonstrated compared to a reactor requiring the use of a solvent. Thus, this ii wholly new reactor design provides a new approach to achieving green chemistry that could be theoretically easily adapted to other reactions. III. Analysis of in situ Fourier transform infrared (FTIR) spectroscopic data also suggested that the reaction kinetics of this solventless imination case study could be screened for the first time using the HPOBR and JOBR. This was tested by applying flow-screening protocols that adjusted the reactant molar ratio, residence time, and temperature in a single flow experiment. Both reactor configurations were able to screen the Arrhenius kinetics parameters (pre-exponential factors, activation energies, and equilibrium constants) of both steps of the imination reaction. By defining experiment conditions using design of experiments (DoE) methodologies, a theoretical 70+% reduction in material usage/time requirement for screening was achieved compared to the previous state-of-the-art screening using meso-OBRs in the literature. Additionally, it was discovered that thermal effects on the reaction could be inferred by changing other operating conditions such as molar ratio and residence time. This further simplifies the screening protocols by eliminating the need for active temperature control strategies (such as a jacket). IV. Finally, potential application areas for further development of the meso-OBR platform using 3D printing were devised. These areas conformed to different “hierarchies” of complexity, from new baffle structures (simplest) to entirely new methods for achieving mixing (most complex). This latter option was adopted as a case study, where the passively generated pulsatile flows of fluidic oscillators were tested for the first time as a means for improving plug flow. Improved plug flow behaviour was indeed demonstrated in three different standard reactor geometries (plain, baffled and coiled tubes), where it could be inferred that axial dispersion was decoupled from the secondary flows in an analogous manner to the OBR. The results indicate that these devices could be the basis for a new flow chemistry platform that requires no moving parts, which would be appealing for various industrial applications. It is concluded that, for the meso-OBR platform to remain relevant in the next era of tailor-made reactors (with rapid uptake of 3D printing), the identified areas where 3D printing could benefit the meso-OBR should be further explored

    Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

    Get PDF
    Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments
    corecore