165 research outputs found

    Real-time bandwidth encapsulation for IP/MPLS Protection Switching

    Get PDF
    Bandwidth reservation and bandwidth allocation are needed to guarantee the protection of voice traffic during network failure. Since voice calls have a time constraint of 50 ms within which the traffic must be recovered, a real-time bandwidth management scheme is required. Such bandwidth allocation scheme that prioritizes voice traffic will ensure that the voice traffic is guaranteed the necessary bandwidth during the network failure. Additionally, a mechanism is also required to provide the bandwidth to voice traffic when the reserved bandwidth is insufficient to accommodate voice traffic. This mechanism must be able to utilise the working bandwidth or bandwidth reserved for lower priority applications and allocate it to the voice traffic when a network failure occurs

    Traffic Engineering

    Get PDF

    Efficient Distributed Solution for MPLS Fast Reroute

    Get PDF
    As service providers move more applications to their IP/MPLS (Multiple Protocol Label Switching) networks, rapid restoration upon failure becomes more and more crucial. Recently MPLS fast reroute has attracted lots of attention as it was designed to meet the needs of real-time applications, such as voice over IP. MPLS fast reroute achieves rapid restoration by computing and signaling backup label switched paths (LSP) in advance and re-directing traffic as close to failure point as possible. To provide a guarantee of failure restoration, extra bandwidth has to be reserved on backup LSPs. To improve the bandwidth utilization, path-merging technique was proposed to allow bandwidth sharing on common links among a service LSP and its backup LSPs. However, the sharing is very limited. In this paper, we provide efficient distributed solution, which would allow much broader bandwidth sharing among any backup LSPs from different service LSPs. We also propose an efficient algorithm for backup path selection to further increase the bandwidth sharing. The associated signaling extension for additional information distribution and collection is provided. To evaluate our solution, we compare its performance with the MPLS fast reroute proposal in IETF via simulation. The key figure-of-merit for restoration capacity efficiency is restoration overbuild, i.e., the ratio of restoration capacity to service capacity. Our simulation results show that our distributed solution reduces restoration overbuild from 2.5 to 1, and our optimized backup path selection further reduces restoration overbuild to about 0.5

    Multi-Link Failure Effects on MPLS Resilient Fast-Reroute Network Architectures

    Get PDF
    © 2021 IEEE.MPLS has been in the forefront of high-speed Wide Area Networks (WANs), for almost two decades [1, 12]. The performance advantages in implementing Multi-Protocol Label Switching (MPLS) are mainly its superior speed based on fast label switching and its capability to perform Fast Reroute rapidly when failure(s) occur – in theory under 50 ms [16, 17], which makes MPLS also interesting for real-time applications. We investigate the aforementioned advantages of MPLS by creating two real testbeds using actual routers that commercial Internet Service Providers (ISPs) use, one with a ring and one with a partial mesh architecture. In those two testbeds we compare the performance of MPLS channels versus normal routing, both using the Open Shortest Path First (OSPF) routing protocol. The speed of the Fast Reroute mechanism for MPLS when failures are occurring is investigated. Firstly, baseline experiments are performed consisting of MPLS versus normal routing. Results are evaluated and compared using both single and dual failure scenarios within the two architectures. Our results confirm recovery times within 50 ms

    Signalling of Point to Multipoint Trees in Metro Ethernet and Core Networks

    Get PDF
    Diplomityössä tutustuttiin IPTV-kanavien siirtoon Core-verkosta MetroEthernet-verkon asiakasta lähinnä olevalle laidalle. Tavoitteena oli kehittää nopeampi ratkaisu monilähetyspuiden konfigurointiin laitevalmistajan toteuttamilla protokollilla. Nykyinen ratkaisu, jossa käytetään Resource reSerVation Protocol:ia MultiProtocol Label Switching-tunneleiden signaloimiseen, Internet Group Management Protocol Snooping:ia halukkaiden vastaanottajien kartoittamiseen sekä Protocol Independent Multicast-Source Specific Multicast:ia runkoverkon monilähetykseen on liian työläs. Uudet ratkaisut, joissa yhdistellään RSVP:tä, point-to-multipoint RSVP:tä, Fast ReRoutea ja PIM-SSM:ia testataan TeliaSoneran tietoverkkolaboratoriossa. Tulosten perusteella ei voida sanoa paljoa varmasti, mutta FRR ME-verkossa vaikuttaa helppokäyttöiseltä ja toimivalta ratkaisulta. Lisäksi P2MP RSVP-TE herätti toiveita nopeammin vikatilanteista toipuvasta monilähetysratkaisusta runkoverkosta, kunhan ilmenneiden vikojen syyt saadaan selville.This master's thesis studies the distribution of IPTV channels from a core network to the edges of a MetroEthernet network. The goal is to find a faster solution for configuring multicast trees using protocols implemented by vendors. The current solution which uses Resource reSerVation Protocol for signalling MultiProtocol Label Switched tunnels, Internet Group Management Protocol Snooping for mapping receivers and Protocol Independent Multicast-Source Specific Multicast for core multicast creates too much work. The new solutions combine RSVP, point-to-multipoint RSVP, Fast ReRoute and PIM-SSM and they are tested in the TeliaSonera networking laboratory. Based on test results there is not much certainty about many things but it can be said that FRR seems to be working well and it is easy to use. Furthermore, P2MP RSVP seemed promising for the core network with faster convergence times in failure cases than PIM-SSM. However, there are few problems to be solved before the protocol is ready for use in the production network

    RSVP-TE: Extensions to RSVP for LSP Tunnels

    Full text link

    Requirements for Header Compression over MPLS

    Full text link

    Quantitative Verification and Synthesis of Resilient Networks

    Get PDF

    MPLS based recovery mechanisms

    Get PDF
    Multi-protocol label switching (MPLS) integrates the label swapping forwarding paradigm with network layer routing. To deliver reliable service, MPLS requires a set of procedures to provide protection of the traffic carried on different paths. This requires that the label switching routers (LSRs) support fault detection, fault notification, and fault recovery mechanisms, and that MPLS signaling supports the configuration of recovery. The purpose of this work is to evaluate the different recovery mechanisms proposed by the IETF, by literature study and simulation experiments
    • …
    corecore