5,063 research outputs found

    Fast recovery from node compromise in wireless sensor networks

    Full text link
    Wireless Sensor Networks (WSNs) are susceptible to a wide range of security attacks in hostile environments due to the limited processing and energy capabilities of sensor nodes. Consequently, the use of WSNs in mission critical applications requires reliable detection and fast recovery from these attacks. While much research has been devoted to detecting security attacks, very little attention has been paid yet to the recovery task. In this paper, we present a novel mechanism that is based on dynamic network reclustering and node reprogramming for recovering from node compromise. In response to node compromise, the proposed recovery approach reclusters the network excluding compromised nodes; thus allowing normal network operation while initiating node recovery procedures. We propose a novel reclustering algorithm that uses 2-hop neighbourhood information for this purpose. For node reprogramming we propose the modified Deluge protocol. The proposed node recovery mechanism is both decentralized and scalable. Moreover, we demonstrate through its implementation on a TelosB-based sensor network testbed that the proposed recovery method performs well in a low-resource WSN.<br /

    Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications

    Get PDF
    The Internet of Things (IoT) provides a virtual view, via the Internet Protocol, to a huge variety of real life objects, ranging from a car, to a teacup, to a building, to trees in a forest. Its appeal is the ubiquitous generalized access to the status and location of any "thing" we may be interested in. Wireless sensor networks (WSN) are well suited for long-term environmental data acquisition for IoT representation. This paper presents the functional design and implementation of a complete WSN platform that can be used for a range of long-term environmental monitoring IoT applications. The application requirements for low cost, high number of sensors, fast deployment, long lifetime, low maintenance, and high quality of service are considered in the specification and design of the platform and of all its components. Low-effort platform reuse is also considered starting from the specifications and at all design levels for a wide array of related monitoring application

    A Cross-Layer Approach for Minimizing Interference and Latency of Medium Access in Wireless Sensor Networks

    Full text link
    In low power wireless sensor networks, MAC protocols usually employ periodic sleep/wake schedule to reduce idle listening time. Even though this mechanism is simple and efficient, it results in high end-to-end latency and low throughput. On the other hand, the previously proposed CSMA/CA-based MAC protocols have tried to reduce inter-node interference at the cost of increased latency and lower network capacity. In this paper we propose IAMAC, a CSMA/CA sleep/wake MAC protocol that minimizes inter-node interference, while also reduces per-hop delay through cross-layer interactions with the network layer. Furthermore, we show that IAMAC can be integrated into the SP architecture to perform its inter-layer interactions. Through simulation, we have extensively evaluated the performance of IAMAC in terms of different performance metrics. Simulation results confirm that IAMAC reduces energy consumption per node and leads to higher network lifetime compared to S-MAC and Adaptive S-MAC, while it also provides lower latency than S-MAC. Throughout our evaluations we have considered IAMAC in conjunction with two error recovery methods, i.e., ARQ and Seda. It is shown that using Seda as the error recovery mechanism of IAMAC results in higher throughput and lifetime compared to ARQ.Comment: 17 pages, 16 figure

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task

    Synchronous wearable wireless body sensor network composed of autonomous textile nodes

    Get PDF
    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system
    corecore