59,197 research outputs found

    Odors: from chemical structures to gaseous plumes

    Get PDF
    We are immersed within an odorous sea of chemical currents that we parse into individual odors with complex structures. Odors have been posited as determined by the structural relation between the molecules that compose the chemical compounds and their interactions with the receptor site. But, naturally occurring smells are parsed from gaseous odor plumes. To give a comprehensive account of the nature of odors the chemosciences must account for these large distributed entities as well. We offer a focused review of what is known about the perception of odor plumes for olfactory navigation and tracking, which we then connect to what is known about the role odorants play as properties of the plume in determining odor identity with respect to odor quality. We end by motivating our central claim that more research needs to be conducted on the role that odorants play within the odor plume in determining odor identity

    Zero-Shot Deep Domain Adaptation

    Full text link
    Domain adaptation is an important tool to transfer knowledge about a task (e.g. classification) learned in a source domain to a second, or target domain. Current approaches assume that task-relevant target-domain data is available during training. We demonstrate how to perform domain adaptation when no such task-relevant target-domain data is available. To tackle this issue, we propose zero-shot deep domain adaptation (ZDDA), which uses privileged information from task-irrelevant dual-domain pairs. ZDDA learns a source-domain representation which is not only tailored for the task of interest but also close to the target-domain representation. Therefore, the source-domain task of interest solution (e.g. a classifier for classification tasks) which is jointly trained with the source-domain representation can be applicable to both the source and target representations. Using the MNIST, Fashion-MNIST, NIST, EMNIST, and SUN RGB-D datasets, we show that ZDDA can perform domain adaptation in classification tasks without access to task-relevant target-domain training data. We also extend ZDDA to perform sensor fusion in the SUN RGB-D scene classification task by simulating task-relevant target-domain representations with task-relevant source-domain data. To the best of our knowledge, ZDDA is the first domain adaptation and sensor fusion method which requires no task-relevant target-domain data. The underlying principle is not particular to computer vision data, but should be extensible to other domains.Comment: This paper is accepted to the European Conference on Computer Vision (ECCV), 201

    Generative and Discriminative Voxel Modeling with Convolutional Neural Networks

    Get PDF
    When working with three-dimensional data, choice of representation is key. We explore voxel-based models, and present evidence for the viability of voxellated representations in applications including shape modeling and object classification. Our key contributions are methods for training voxel-based variational autoencoders, a user interface for exploring the latent space learned by the autoencoder, and a deep convolutional neural network architecture for object classification. We address challenges unique to voxel-based representations, and empirically evaluate our models on the ModelNet benchmark, where we demonstrate a 51.5% relative improvement in the state of the art for object classification.Comment: 9 pages, 5 figures, 2 table
    • …
    corecore