4,952 research outputs found

    Dose, exposure time, and resolution in Serial X-ray Crystallography

    Full text link
    The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available molecular and X-ray fluxes and molecular alignment. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of an electron density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate counting time and the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 0.7 nm should be possible with short exposures.Comment: 19 pages, 7 figures, 1 tabl

    TIRSPEC : TIFR Near Infrared Spectrometer and Imager

    Full text link
    We describe the TIFR Near Infrared Spectrometer and Imager (TIRSPEC) designed and built in collaboration with M/s. Mauna Kea Infrared LLC, Hawaii, USA, now in operation on the side port of the 2-m Himalayan Chandra Telescope (HCT), Hanle (Ladakh), India at an altitude of 4500 meters above mean sea level. The TIRSPEC provides for various modes of operation which include photometry with broad and narrow band filters, spectrometry in single order mode with long slits of 300" length and different widths, with order sorter filters in the Y, J, H and K bands and a grism as the dispersing element as well as a cross dispersed mode to give a coverage of 1.0 to 2.5 microns at a resolving power R of ~1200. The TIRSPEC uses a Teledyne 1024 x 1024 pixel Hawaii-1 PACE array detector with a cutoff wavelength of 2.5 microns and on HCT, provides a field of view of 307" x 307" with a plate scale of 0.3"/pixel. The TIRSPEC was successfully commissioned in June 2013 and the subsequent characterization and astronomical observations are presented here. The TIRSPEC has been made available to the worldwide astronomical community for science observations from May 2014.Comment: 20 pages, 21 figures, 2 tables. Accepted for publication in Journal of Astronomical Instrumentatio

    Power system applications of fiber optics

    Get PDF
    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described

    Strain Transfer in Surface-Bonded Optical Fiber Sensors

    Get PDF
    Fiber optic sensors represent one of the most promising technologies for the monitoring of various engineering structures. A major challenge in the field is to analyze and predict the strain transfer to the fiber core reliably. Many authors developed analytical models of a coated optical fiber, assuming null strain at the ends of the bonding length. However, this configuration only partially reflects real experimental setups in which the cable structure can be more complex and the strains do not drastically reduce to zero. In this study, a novel strain transfer model for surface-bonded sensing cables with multilayered structure was developed. The analytical model was validated both experimentally and numerically, considering two surface-mounted cable prototypes with three different bonding lengths and five load cases. The results demonstrated the capability of the model to predict the strain profile and, differently from the available strain transfer models, that the strain values at the extremities of the bonded fiber length are not null

    Fourier Transform

    Get PDF
    The application of Fourier transform (FT) in signal processing and physical sciences has increased in the past decades. Almost all the textbooks on signal processing or physics have a section devoted to the FT theory. For this reason, this book focuses on signal processing and physical sciences. The book chapters are related to fast hybrid recursive FT based on Jacket matrix, acquisition algorithm for global navigation satellite system, determining the sensitivity of output parameters based on FFT, convergence of integrals of products based on Riemann-Lebesgue Lemma function, extending the real and complex number fields for treating the FT, nonmaterial structure, Gabor transform, and chalcopyrite bioleaching. The book provides applications oriented to signal processing and physics written primarily for engineers, mathematicians, physicians and graduate students, will also find it useful as a reference for their research activities

    Gaussian process regression for fatigue reliability analysis of offshore wind turbines

    Get PDF
    The fatigue limit state (FLS) often drives the design of offshore wind turbine (OWT) substructures in European waters. Assessing fatigue damage over the intended design life of an OWT is computationally expensive, primarily as dynamic structural analyses have to be run for a large number of stochastic wind and wave loading conditions. This makes structural reliability assessment for the FLS a challenging task. In addition to evaluating load-induced fatigue damage, simulation-based structural reliability analysis also requires sampling of random variables that model uncertainties in the capacity of OWT structural components. To this aim, we develop and validate a computational framework for OWT fatigue reliability analysis that relies on Gaussian process (GP) regression to build surrogate models of load-induced fatigue damage. We demonstrate that the proposed approach can reduce the computational effort required to evaluate FLS reliability with high accuracy through application to three plausible offshore wind farm sites in Europe. The sensitivity of various goodness-of-fit metrics to different model assumptions is investigated to further reduce the computational effort required to perform GP regression/predictions. The results from this study can provide guidance for practical applications of the proposed framework in OWT projects

    Kinetics of a surface reaction studied with microcalorimetry

    Get PDF

    XFELs for structure and dynamics in biology

    Get PDF
    abstract: The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump–probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallo­graphy to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.View the article as published at http://journals.iucr.org/m/issues/2017/04/00/hi5644/index.htm
    • …
    corecore