1,007 research outputs found

    Complex Quadrature Spatial Modulation

    Full text link
    In this paper, we propose a spatial modulation (SM) scheme referred to as complex quadrature spatial modulation (CQSM). In contrast to quadrature spatial modulation (QSM), CQSM transmits two complex signal constellation symbols on the real and quadrature spatial dimensions at each channel use, increasing the spectral efficiency. To this end, signal symbols transmitted at any given time instant are drawn from two different modulation sets. The first modulation set is any of the conventional QAM/PSK alphabets, while the second is a rotated version of it. The optimal rotation angle is obtained through simulations for several modulation schemes and analytically proven for the case of QPSK, where both results coincide. Simulation results showed that CQSM outperformed QSM and generalized SM (GSM) by approximately 5 and 4.5 dB, respectively, for the same transmission rate. Its performance was similar to that of QSM; however, it achieved higher transmission rates. It was additionally shown numerically and analytically that CQSM outperformed QSM for a relatively large number of transmit antennas.Comment: 11 pages, 3 tables, 11 figures. ETRI Journal, 201

    Improved Spatial Modulation Techniques for Wireless Communications

    Get PDF
    Transmission and reception methods with multiple antennas have been demonstrated to be very useful in providing high data rates and improving reliability in wireless communications. In particular, spatial modulation (SM) has recently emerged as an attractive transmission method for multiple-antennas systems due to its better energy efficiency and lower system complexity. This thesis is concerned with developing transmission techniques to improve the spectral efficiency of SM where antenna/subcarrier index involves in conveying information bits. In the first part of the thesis, new transmission techniques are developed for SM over frequency-flat fading channels. The first proposed scheme is based on a high-rate space-time block code instead of using the classical Alamouti STBC, which helps to increase the spectral efficiency and achieve a transmit diversity order of two. A simplified maximum likelihood detection is also developed for this proposed scheme. Analysis of coding gains and simulation results demonstrate that the proposed scheme outperforms previously-proposed SM schemes at high data transmission rates. Then, a new space-shift keying (SSK) modulation scheme is proposed which requires a smaller number of transmit antennas than that required in the bi-space shift keying (BiSSK). Such a proposed SSK-based scheme is obtained by multiplexing two in-phase and quadrature generalized SSK streams and optimizing the carrier signals transmitted by the activated antennas. Performance of the proposed scheme is compared with other SSK-based schemes via minimum Euclidean distance analysis and computer simulation. The third scheme proposed in this part is an improved version of quadrature SM (QSM). The main feature of this proposed scheme is to send a second constellation symbol over the in-phase and quadrature antenna dimensions. A significant performance advantage of the proposed scheme is realized at the cost of a slight increase in the number of radio-frequency (RF) chains. Performance comparisons with the most recent SM schemes confirm the advantage of the proposed scheme. The last contribution of the first part is an optimal constellation design for QSM to minimize the average probability of error. It is shown that, the error performance of QSM not only depends on the Euclidean distances between the amplitude phase modulation (APM) symbols and the energies of APM symbols, but also on the in-phase and quadrature components of the QSM symbols. The analysis of the union bound of the average error probability reveals that at a very large number of transmit antennas, the optimal constellations for QSM converge to a quadrature phase shift keying (QPSK) constellation. Simulation results demonstrate the performance superiority of the obtained constellations over other modulation schemes. In the second part of the thesis, the applications of SM in frequency-selective fading channels are studied. First, a new transmission scheme that employs SM for each group of subcarriers in orthogonal frequency-division multiplexing (OFDM) transmission is investigated. Specifically, OFDM symbols in each group are passed through a precoder to maximize the diversity and coding gains, while SM is applied in each group to convey more information bits by antenna indices. Performance analysis and simulation results are carried out to demonstrate the superiority of the proposed scheme over a previously-proposed combination of SM and OFDM. Next, the performance of OFDM based on index modulation and a flexible version of OFDM, knows as OFDM with multiple constellations, is compared for both case of "no precoding'' and "with precoding'' of data symbols. It is shown that the precoded OFDM with multiple constellations outperforms precoded-IM based OFDM systems over frequency-selective fading channels. The last part of the thesis investigates a multiuser downlink transmission system based on in-phase and quadrature space-shift keying modulation and precoding to reduce the minimum number of transmit antennas while keeping the complexity of the receiver low. In addition to the maximum likelihood (ML) detection, the low complexity zero forcing (ZF) receiver is also studied. Theoretical upper bounds for the error probabilities of both ML and ZF receivers are obtained and corroborated with simulation results

    An Overview of Physical Layer Security with Finite-Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving perfect secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and we discuss some open problems and directions for future research.Comment: Submitted to IEEE Communications Surveys & Tutorials (1st Revision

    Quadrature spatial modulation aided single-input multiple-output-media based modulation: application to cooperative network and golden code orthogonal super-symbol systems.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.SIMO-MBM (single-input multiple-output media-based modulation) overcomes the limitations of SIMO (single-input multiple-output) systems by reducing the number of antennas required to achieve a high data rate and improved error performance. In this thesis, the quadrature dimension of the spatial constellation is used to improve the overall error performance of the conventional SIMO-MBM and to achieve a higher data rate by decomposing the amplitude/phase modulation (APM) symbol into real and imaginary components, similar to quadrature spatial modulation (QSM). The average bit error probability of the proposed technique is expressed using a lower bound approach and validated using the results of Monte Carlo simulation (MCS). The proposed system also investigates the effect of antenna correlation in combination with channel amplitude to select a sub-optimal mirror activation pattern. The results of MCS show a 3.5dB improvement at 10b/s/Hz with m =2 and a 7dB improvement at 12b/s/Hz with =2 over the traditional SIMO-MBM scheme. The effect of imperfect channel estimation on the proposed scheme is investigated, with a trade-off of 2dB in coding gain due to channel estimation errors. Cooperative Networking (CN) improves wireless network reliability, link quality, and spectrum efficiency by collaborating among nodes. The decode and forward relaying technique is used in this thesis to investigate the performance of QSM aided SIMO-MBM in a Cooperative Network (CN). This technique uses two source nodes that simultaneously transmit a unique message block on the same time slot to the relay node, which then decodes the received message block from both transmitting nodes before re-encoding and re-transmitting the decoded message block in the next time slot to the destinations in order to significantly improve the QSM aided SIMO-MBM’s error performance. Using network coding (NC) techniques, each Node can decode the data of the other Node. To enhance network performance, complexity, robustness, and minimize delays, data is encoded and decoded in NC; algebraic techniques are applied to the detected message to collect the various transmissions. The proposed scheme's theoretical average error probability was defined using a lower bound technique, and the results of Monte Carlo simulation (MCS) validated the result. The MCS results achieved exhibit a significant improvement of 8 dB at 6 b/s/Hz and 12 dB at 8 b/s/Hz over the conventional QSM aided SIMO-MBM scheme. The media-based modulation (MBM) technique can achieve significant throughput, increase spectrum efficiency, and improve bit-error-rate performance (BER). In this thesis, the use of MBM in single-input multiple-output systems is examined using radio frequency (RF) mirrors and Golden code (GC-SIMO). The goal is to lower the system's hardware complexity by maximizing the linear relationship between RF mirrors and spectral efficiency in MBM in order to achieve a high data rate with less hardware complexity. The GC scheme's encoder uses orthogonal pairs of the super-symbol, each transmitted via a separate RF mirror at a different time slot to achieve full rate full diversity. In the results of MCS obtained, at a BER of 10−5, the GC-SIMO-MBM exhibits a significant performance of approximately 7dB and 6.5 dB SNR gain for 4 b/s/Hz and 6 b/s/Hz, respectively, compared to GC-SIMO. The proposed scheme's derived theoretical average error probability is validated by the results of the Monte Carlo simulation
    • …
    corecore