3,392 research outputs found

    The pharmacophore kernel for virtual screening with support vector machines

    Full text link
    We introduce a family of positive definite kernels specifically optimized for the manipulation of 3D structures of molecules with kernel methods. The kernels are based on the comparison of the three-points pharmacophores present in the 3D structures of molecul es, a set of molecular features known to be particularly relevant for virtual screening applications. We present a computationally demanding exact implementation of these kernels, as well as fast approximations related to the classical fingerprint-based approa ches. Experimental results suggest that this new approach outperforms state-of-the-art algorithms based on the 2D structure of mol ecules for the detection of inhibitors of several drug targets

    A Comparison of Multi-instance Learning Algorithms

    Get PDF
    Motivated by various challenging real-world applications, such as drug activity prediction and image retrieval, multi-instance (MI) learning has attracted considerable interest in recent years. Compared with standard supervised learning, the MI learning task is more difficult as the label information of each training example is incomplete. Many MI algorithms have been proposed. Some of them are specifically designed for MI problems whereas others have been upgraded or adapted from standard single-instance learning algorithms. Most algorithms have been evaluated on only one or two benchmark datasets, and there is a lack of systematic comparisons of MI learning algorithms. This thesis presents a comprehensive study of MI learning algorithms that aims to compare their performance and find a suitable way to properly address different MI problems. First, it briefly reviews the history of research on MI learning. Then it discusses five general classes of MI approaches that cover a total of 16 MI algorithms. After that, it presents empirical results for these algorithms that were obtained from 15 datasets which involve five different real-world application domains. Finally, some conclusions are drawn from these results: (1) applying suitable standard single-instance learners to MI problems can often generate the best result on the datasets that were tested, (2) algorithms exploiting the standard asymmetric MI assumption do not show significant advantages over approaches using the so-called collective assumption, and (3) different MI approaches are suitable for different application domains, and no MI algorithm works best on all MI problems

    Evolutionary Granular Kernel Machines

    Get PDF
    Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research. For these important problems, powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data reduction method is presented, and a new MEB-SVM algorithm is designed. All these kernel methods are designed based on Granular Computing (GrC). In general, Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels effectively, speed up training greatly and mine huge amounts of data efficiently
    corecore