332,359 research outputs found

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    A suggested roadmap for world-wide energy resource planning and management

    Full text link
    In the near future, we will need an internationally based system for worldwide planning of future energy resources and their effect on the world environment. Logically, this should be a responsibility of the United Nations, which already possesses much of the infrastructure needed and is already active in this area. Because different nations have different resources, different problems and different needs, it is reasoned that a flexible and diplomatic approach is also called for. We will need to try to secure support from all nations, and the economies and cultures of many nations differ considerably. This calls for special skills in negotiation. This is complicated by the varied, uncertain and changing technological facilities, which we have at our disposal. After a brief and comparative review of these facilities, an outline of the structure of the internationally coordinating organisation is suggested, followed by examples of the different types of issues which are likely to be encountered. These are: reintroducing improved technology to a nation, which has suffered grievous environmental harm from inadequate similar technology such as the Fukushima incident; nations with especially difficult transport problems; nations with perceived overpopulation problems; using UN and other expertise for nations still undergoing development; applying persuasive pressure by peaceful means. Finally, by outlining a large-scale cooperative venture by several nations, the mode of operation of the suggested U.N coordinating body is outlined. The example used is the choice of thorium-based molten-salt reactor technology using both fast and thermal neutron spectra. This appears to be the only choice we have, as other sustainable systems cannot accommodate the size of our problems. The only exception is using the Desertec solar project, which appears to be disadvantaged by being significantly more expensive. Molten-salt reactors would give a 1000-year energy security for industrialised energy-hungry nations on the Far East/Pacific Rim, which is the example considered. This system would use modern actinide burn-up technology to make nuclear-waste disposal a more acceptable proposition. Thus, nuclear waste can become a lowlevel and disposable hazard after only about 300 years of storage. After this storage, the waste becomes a valuable resource due to production of rare transmuted elements
    corecore