1,822 research outputs found

    The Penalized Lebesgue Constant for Surface Spline Interpolation

    Full text link
    Problems involving approximation from scattered data where data is arranged quasi-uniformly have been treated by RBF methods for decades. Treating data with spatially varying density has not been investigated with the same intensity, and is far less well understood. In this article we consider the stability of surface spline interpolation (a popular type of RBF interpolation) for data with nonuniform arrangements. Using techniques similar to those recently employed by Hangelbroek, Narcowich and Ward to demonstrate the stability of interpolation from quasi-uniform data on manifolds, we show that surface spline interpolation on R^d is stable, but in a stronger, local sense. We also obtain pointwise estimates showing that the Lagrange function decays very rapidly, and at a rate determined by the local spacing of datasites. These results, in conjunction with a Lebesgue lemma, show that surface spline interpolation enjoys the same rates of convergence as those of the local approximation schemes recently developed by DeVore and Ron.Comment: 20 pages; corrected typos; to appear in Proc. Amer. Math. So

    Image Reconstruction from Undersampled Confocal Microscopy Data using Multiresolution Based Maximum Entropy Regularization

    Full text link
    We consider the problem of reconstructing 2D images from randomly under-sampled confocal microscopy samples. The well known and widely celebrated total variation regularization, which is the L1 norm of derivatives, turns out to be unsuitable for this problem; it is unable to handle both noise and under-sampling together. This issue is linked with the notion of phase transition phenomenon observed in compressive sensing research, which is essentially the break-down of total variation methods, when sampling density gets lower than certain threshold. The severity of this breakdown is determined by the so-called mutual incoherence between the derivative operators and measurement operator. In our problem, the mutual incoherence is low, and hence the total variation regularization gives serious artifacts in the presence of noise even when the sampling density is not very low. There has been very few attempts in developing regularization methods that perform better than total variation regularization for this problem. We develop a multi-resolution based regularization method that is adaptive to image structure. In our approach, the desired reconstruction is formulated as a series of coarse-to-fine multi-resolution reconstructions; for reconstruction at each level, the regularization is constructed to be adaptive to the image structure, where the information for adaption is obtained from the reconstruction obtained at coarser resolution level. This adaptation is achieved by using maximum entropy principle, where the required adaptive regularization is determined as the maximizer of entropy subject to the information extracted from the coarse reconstruction as constraints. We demonstrate the superiority of the proposed regularization method over existing ones using several reconstruction examples

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed
    corecore