158 research outputs found

    Feature based volumes for implicit intersections.

    Get PDF
    The automatic generation of volumes bounding the intersection of two implicit surfaces (isosurfaces of real functions of 3D point coordinates) or feature based volumes (FBV) is presented. Such FBVs are defined by constructive operations, function normalization and offsetting. By applying various offset operations to the intersection of two surfaces, we can obtain variations in the shape of an FBV. The resulting volume can be used as a boundary for blending operations applied to two corresponding volumes, and also for visualization of feature curves and modeling of surface based structures including microstructures

    Complex skeletal implicit surfaces

    Get PDF
    Recent research has demonstrated the effectiveness of complex skeletal primitives such as subdivision curves and surfaces in implicit surface modeling. This paper presents a hierarchichal modeling system with an automatic levels of detail management for a simpler modeling with an accelerated rendering. We manage levels of detail with smooth transitions and tree optimizations speeding up visualization by an order of magnitude, which allows an interactive editing of the shapes

    Polygonization of Multi-Component Non-Manifold Implicit Surfaces through A Symbolic-Numerical Continuation Algorithm

    Get PDF
    In computer graphics, most algorithms for sampling implicit surfaces use a 2-points numerical method. If the surface-describing function evaluates positive at the first point and negative at the second one, we can say that the surface is located somewhere between them. Surfaces detected this way are called sign-variant implicit surfaces. However, 2-points numerical methods may fail to detect and sample the surface because the functions of many implicit surfaces evaluate either positive or negative everywhere around them. These surfaces are here called sign-invariant implicit surfaces. In this paper, instead of using a 2-points numerical method, we use a 1-point numerical method to guarantee that our algorithm detects and samples both sign-variant and sign-invariant surface components or branches correctly. This algorithm follows a continuation approach to tessellate implicit surfaces, so that it applies symbolic factorization to decompose the function expression into symbolic components, sampling then each symbolic function component separately. This ensures that our algorithm detects, samples, and triangulates most components of implicit surfaces

    Triangulation of uniform particle systems: its application to the implicit surface texturing

    Get PDF
    Particle systems, as originally presented by Witkin and Heckbert [32], offer an elegant solution to sample implicit surfaces of arbitrary genus, while providing an extremely regular distribution of samples over the surface. In this paper, we present an ef cient technique that uses particle systems to rapidly generate a triangular mesh over an implicit surface, where each triangle is almost equilateral. The major advantage of such a triangulation is that it minimizes the deformations between the mesh and the underlying implicit surface. We exploit this property by using few triangular texture samples mapped in a non-periodic fashion as presented by Neyret and Cani [16]. The result is a pattern-based texturing method that maps homogeneous non-periodic textures to arbitrary implicit surfaces, with almost no deformation

    Piecewise Linear Approximations of Digitized Space Curves with Applications

    Get PDF
    corecore