8,696 research outputs found

    Analysing the police patrol routing problem : a review

    Get PDF
    Police patrol is a complex process. While on patrol, police officers must balance many intersecting responsibilities. Most notably, police must proactively patrol and prevent offenders from committing crimes but must also reactively respond to real-time incidents. Efficient patrol strategies are crucial to manage scarce police resources and minimize emergency response times. The objective of this review paper is to discuss solution methods that can be used to solve the so-called police patrol routing problem (PPRP). The starting point of the review is the existing literature on the dynamic vehicle routing problem (DVRP). A keyword search resulted in 30 articles that focus on the DVRP with a link to police. Although the articles refer to policing, there is no specific focus on the PPRP; hence, there is a knowledge gap. A diversity of approaches is put forward ranging from more convenient solution methods such as a (hybrid) Genetic Algorithm (GA), linear programming and routing policies, to more complex Markov Decision Processes and Online Stochastic Combinatorial Optimization. Given the objectives, characteristics, advantages and limitations, the (hybrid) GA, routing policies and local search seem the most valuable solution methods for solving the PPRP

    An Online Decision-Theoretic Pipeline for Responder Dispatch

    Full text link
    The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time with a drastic reduction in computational time.Comment: Appeared in ICCPS 201

    Application of automatic vehicle location in law enforcement: An introductory planning guide

    Get PDF
    A set of planning guidelines for the application of automatic vehicle location (AVL) to law enforcement is presented. Some essential characteristics and applications of AVL are outlined; systems in the operational or planning phases are discussed. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. A detailed description of a typical law enforcement AVL system, and a list of vendor sources are given in appendixes

    INCORPORATING RADIO FREQUENCY MESH NETWORKS TO LINK LIVE, VIRTUAL, CONSTRUCTIVE TRAINING

    Get PDF
    Given the importance of modeling and simulation (M&S) for creating realistic training environments and employing or developing tactical systems for warfighters, the Department of Defense is turning toward live, virtual, constructive (LVC) simulations as a means to prepare and equip our military for the next war. M&S offers a unique competency for modeling emergent enemy behaviors in constructive simulations on virtual battlefields across the globe. Transferring these dynamic tactical actions to live command and control (C2) systems used during training can create decision-making opportunities for distributed units to react to and act upon. The research conducted in this thesis assessed, developed, and implemented an appropriate LVC environment that can be used in training for tactical convoy operations in the Marine Corps. We developed a robust mesh network connected to a personal computer running a constructive simulation to create dynamic tracks on handheld, Android-based C2 systems. Using low-bandwidth radios to create the network, we were able to create a rich, tactically realistic training environment while minimally increasing the combat load of our Marines. The system we created has the same functionality of the blue force tracker (BFT). Because the BFT is no longer funded, we recommend the LVC solution we created for this thesis as a potential replacement with embedded training capabilities.Captain, United States Marine CorpsApproved for public release. distribution is unlimite
    • …
    corecore