71 research outputs found

    Detecting Abnormal Social Robot Behavior through Emotion Recognition

    Get PDF
    Sharing characteristics with both the Internet of Things and the Cyber Physical Systems categories, a new type of device has arrived to claim a third category and raise its very own privacy concerns. Social robots are in the market asking consumers to become part of their daily routine and interactions. Ranging in the level and method of communication with the users, all social robots are able to collect, share and analyze a great variety and large volume of personal data.In this thesis, we focus the community’s attention to this emerging area of interest for privacy and security research. We discuss the likely privacy issues, comment on current defense mechanisms that are applicable to this new category of devices, outline new forms of attack that are made possible through social robots, highlight paths that research on consumer perceptions could follow, and propose a system for detecting abnormal social robot behavior based on emotion detection

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Network Security: An Achilles Heel for Organizations of All Sizes Providing Backup in a VolP World Security Concerns Shift lnward Cell Phones, Land Lines, and E911 Security Checklists Higher Ed\u27s Tricky Equation: Directories Help Balance Availability with Security Disaster Recovery Planning Essentials Passing the Test of productivity Interview President\u27s Message From the Executive Director Here\u27s My Advic

    Trustworthy Wireless Personal Area Networks

    Get PDF
    In the Internet of Things (IoT), everyday objects are equipped with the ability to compute and communicate. These smart things have invaded the lives of everyday people, being constantly carried or worn on our bodies, and entering into our homes, our healthcare, and beyond. This has given rise to wireless networks of smart, connected, always-on, personal things that are constantly around us, and have unfettered access to our most personal data as well as all of the other devices that we own and encounter throughout our day. It should, therefore, come as no surprise that our personal devices and data are frequent targets of ever-present threats. Securing these devices and networks, however, is challenging. In this dissertation, we outline three critical problems in the context of Wireless Personal Area Networks (WPANs) and present our solutions to these problems. First, I present our Trusted I/O solution (BASTION-SGX) for protecting sensitive user data transferred between wirelessly connected (Bluetooth) devices. This work shows how in-transit data can be protected from privileged threats, such as a compromised OS, on commodity systems. I present insights into the Bluetooth architecture, Intel’s Software Guard Extensions (SGX), and how a Trusted I/O solution can be engineered on commodity devices equipped with SGX. Second, I present our work on AMULET and how we successfully built a wearable health hub that can run multiple health applications, provide strong security properties, and operate on a single charge for weeks or even months at a time. I present the design and evaluation of our highly efficient event-driven programming model, the design of our low-power operating system, and developer tools for profiling ultra-low-power applications at compile time. Third, I present a new approach (VIA) that helps devices at the center of WPANs (e.g., smartphones) to verify the authenticity of interactions with other devices. This work builds on past work in anomaly detection techniques and shows how these techniques can be applied to Bluetooth network traffic. Specifically, we show how to create normality models based on fine- and course-grained insights from network traffic, which can be used to verify the authenticity of future interactions

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    An investigation into the usability and acceptability of multi-channel authentication to online banking users in Oman

    Get PDF
    Authentication mechanisms provide the cornerstone for security for many distributed systems, especially for increasingly popular online applications. For decades, widely used, traditional authentication methods included passwords and PINs that are now inadequate to protect online users and organizations from ever more sophisticated attacks. This study proposes an improvement to traditional authentication mechanisms. The solution introduced here includes a one-time-password (OTP) and incorporates the concept of multiple levels and multiple channels – features that are much more successful than traditional authentication mechanisms in protecting users' online accounts from being compromised. This research study reviews and evaluates current authentication classes and mechanisms and proposes an authentication mechanism that uses a variety of techniques, including multiple channels, to resist attacks more effectively than most commonly used mechanisms. Three aspects of the mechanism were evaluated: 1. The security of multi-channel authentication (MCA) was evaluated in theoretical terms, using a widely accepted methodology. 2. The usability was evaluated by carrying out a user study. 3. Finally, the acceptability thereof was evaluated by asking the participants in study (2) specific questions which aligned with the technology acceptance model (TAM). The study’s analysis of the data, gathered from online questionnaires and application log tables, showed that most participants found the MCA mechanism superior to other available authentication mechanisms and clearly supported the proposed MCA mechanism and the benefits that it provides. The research presents guidelines on how to implement the proposed mechanism, provides a detailed analysis of its effectiveness in protecting users' online accounts against specific, commonly deployed attacks, and reports on its usability and acceptability. It represents a significant step forward in the evolution of authentication mechanisms meeting the security needs of online users while maintaining usability

    Authentication Aura: A cooperative and distributed approach to user authentication on mobile devices

    Get PDF
    As information technology pervades our lives we have increasingly come to rely on these evermore sophisticated and ubiquitous items of equipment. Portability and the desire to be connected around the clock has driven the rapid growth in adoption of mobile devices that enable us to talk, message, tweet and inform at will, whilst providing a means to shop and administer bank accounts. These high value, high risk, desirable devices are increasingly the target of theft and improvement in their protection is actively sought by Governments and security agencies. Although forms of security are in place they are compromised by human reluctance and inability to administer them effectively. With typical users operating across multiple devices, including traditional desktop PCs, laptops, tablets and smartphones, they can regularly find themselves having a variety of devices open concurrently. Even if the most basic security is in place, there is a resultant need to repeatedly authenticate, representing a potential source of hindrance and frustration. This thesis explores the need for a novel approach to user authentication, which will reduce the authentication burden whilst providing a secure yet adaptive security mechanism; a so called Authentication Aura. It proposes that the latent security potential contained in surrounding devices and possessions in everyday life can be leveraged to augment security, and provides a framework for a distributed and cooperative approach. An experiment was performed to ascertain the technological infrastructure, devices and inert objects that surround individuals throughout the day. Using twenty volunteers, over a fourteen-day period a dataset of 1.57 million recorded observations was gathered, which confirmed that between 6am and 12pm a significant device or possession is in near proximity 97.84% of the time. Using the data provided by the experiment as the basis for a simulation of the framework, it suggests a reduction of up to 80.36% in the daily number of required authentications for a user operating a device once every 30 minutes, with a 10 minute screen lock in place. Examining the influence of location alone indicated a reduction of 50.74% in user interventions lowering the average from 32 to 15.76, the addition of the surroundings reducing this further to 13.00. The analysis also investigated how a user’s own authentication status could be used to negate the need to repeatedly manually authenticate and it was found that it delayed the process for up to 90 minutes for an individual user. Ultimately, it confirms that during device activation it is possible to remove the need to authenticate with the Authentication Aura providing sufficient assurance.Orange/France Teleco

    Electronic Evidence and Electronic Signatures

    Get PDF
    In this updated edition of the well-established practitioner text, Stephen Mason and Daniel Seng have brought together a team of experts in the field to provide an exhaustive treatment of electronic evidence and electronic signatures. This fifth edition continues to follow the tradition in English evidence text books by basing the text on the law of England and Wales, with appropriate citations of relevant case law and legislation from other jurisdictions. Stephen Mason (of the Middle Temple, Barrister) is a leading authority on electronic evidence and electronic signatures, having advised global corporations and governments on these topics. He is also the editor of International Electronic Evidence (British Institute of International and Comparative Law 2008), and he founded the innovative international open access journal Digital Evidence and Electronic Signatures Law Review in 2004. Daniel Seng (Associate Professor, National University of Singapore) is the Director of the Centre for Technology, Robotics, AI and the Law (TRAIL). He teaches and researches information technology law and evidence law. Daniel was previously a partner and head of the technology practice at Messrs Rajah & Tann. He is also an active consultant to the World Intellectual Property Organization, where he has researched, delivered papers and published monographs on copyright exceptions for academic institutions, music copyright in the Asia Pacific and the liability of Internet intermediaries

    Securing Embedded Systems for Unmanned Aerial Vehicles

    Get PDF
    This project focuses on securing embedded systems for unmanned aerial vehicles (UAV). Over the past two decades UAVs have evolved from a primarily military tool into one that is used in many commercial and civil applications. As the market for these products increases the need to protect transmitted data becomes more important. UAVs are flying missions that contain crucial data and without the right protection they can be vulnerable to malicious attacks. This project focuses on building a UAV platform and working to protect the data transmitted on it. The platform was able to detect red color and wirelessly transmit the coordinates of the color to a remote laptop. Areas that were focused on for security included the image processing and wireless communications modules

    9th Annual Reality CLE

    Get PDF
    Meeting proceedings of a seminar by the same name, held October 14-15, 2021
    • …
    corecore