20,899 research outputs found

    Communication Efficient Checking of Big Data Operations

    Get PDF
    We propose fast probabilistic algorithms with low (i.e., sublinear in the input size) communication volume to check the correctness of operations in Big Data processing frameworks and distributed databases. Our checkers cover many of the commonly used operations, including sum, average, median, and minimum aggregation, as well as sorting, union, merge, and zip. An experimental evaluation of our implementation in Thrill (Bingmann et al., 2016) confirms the low overhead and high failure detection rate predicted by theoretical analysis

    Fast Quantum Fourier Transforms for a Class of Non-abelian Groups

    Full text link
    An algorithm is presented allowing the construction of fast Fourier transforms for any solvable group on a classical computer. The special structure of the recursion formula being the core of this algorithm makes it a good starting point to obtain systematically fast Fourier transforms for solvable groups on a quantum computer. The inherent structure of the Hilbert space imposed by the qubit architecture suggests to consider groups of order 2^n first (where n is the number of qubits). As an example, fast quantum Fourier transforms for all 4 classes of non-abelian 2-groups with cyclic normal subgroup of index 2 are explicitly constructed in terms of quantum circuits. The (quantum) complexity of the Fourier transform for these groups of size 2^n is O(n^2) in all cases.Comment: 16 pages, LaTeX2

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure
    corecore