2,246 research outputs found

    Deep learning architectures for Computer Vision

    Get PDF
    Deep learning has become part of many state-of-the-art systems in multiple disciplines (specially in computer vision and speech processing). In this thesis Convolutional Neural Networks are used to solve the problem of recognizing people in images, both for verification and identification. Two different architectures, AlexNet and VGG19, both winners of the ILSVRC, have been fine-tuned and tested with four datasets: Labeled Faces in the Wild, FaceScrub, YouTubeFaces and Google UPC, a dataset generated at the UPC. Finally, with the features extracted from these fine-tuned networks, some verifications algorithms have been tested including Support Vector Machines, Joint Bayesian and Advanced Joint Bayesian formulation. The results of this work show that an Area Under the Receiver Operating Characteristic curve of 99.6% can be obtained, close to the state-of-the-art performance.El aprendizaje profundo se ha convertido en parte de muchos sistemas en el estado del arte de múltiples ámbitos (especialmente en visión por computador y procesamiento de voz). En esta tesis se utilizan las Redes Neuronales Convolucionales para resolver el problema de reconocer a personas en imágenes, tanto para verificación como para identificación. Dos arquitecturas diferentes, AlexNet y VGG19, ambas ganadores del ILSVRC, han sido afinadas y probadas con cuatro conjuntos de datos: Labeled Faces in the Wild, FaceScrub, YouTubeFaces y Google UPC, un conjunto generado en la UPC. Finalmente con las características extraídas de las redes afinadas, se han probado diferentes algoritmos de verificación, incluyendo Maquinas de Soporte Vectorial, Joint Bayesian y Advanced Joint Bayesian. Los resultados de este trabajo muestran que el Área Bajo la Curva de la Característica Operativa del Receptor puede llegar a ser del 99.6%, cercana al valor del estado del arte.L’aprenentatge profund s’ha convertit en una part importat de molts sistemes a l’estat de l’art de múltiples àmbits (especialment de la visió per computador i el processament de veu). A aquesta tesi s’utilitzen les Xarxes Neuronals Convolucionals per a resoldre el problema de reconèixer persones a imatges, tant per verificació com per identificatió. Dos arquitectures diferents, AlexNet i VGG19, les dues guanyadores del ILSVRC, han sigut afinades i provades amb quatre bases de dades: Labeled Faces in the Wild, FaceScrub, YouTubeFaces i Google UPC, un conjunt generat a la UPC. Finalment, amb les característiques extretes de les xarxes afinades, s’han provat diferents algoritmes de verificació, incloent Màquines de Suport Vectorial, Joint Bayesian i Advanced Joint Bayesian. Els resultats d’aquest treball mostres que un Àrea Baix la Curva de la Característica Operativa del Receptor por arribar a ser del 99.6%, propera al valor de l’estat de l’art

    Robust Recognition using L1-Principal Component Analysis

    Get PDF
    The wide availability of visual data via social media and the internet, coupled with the demands of the security community have led to an increased interest in visual recognition. Recent research has focused on improving the accuracy of recognition techniques in environments where variability is well controlled. However, applications such as identity verification often operate in unconstrained environments. Therefore there is a need for more robust recognition techniques that can operate on data with considerable noise. Many statistical recognition techniques rely on principal component analysis (PCA). However, PCA suffers from the presence of outliers due to occlusions and noise often encountered in unconstrained settings. In this thesis we address this problem by using L1-PCA to minimize the effect of outliers in data. L1-PCA is applied to several statistical recognition techniques including eigenfaces and Grassmannian learning. Several popular face databases are used to show that L1-Grassmann manifolds not only outperform, but are also more robust to noise and occlusions than traditional L2-Grassmann manifolds for face and facial expression recognition. Additionally a high performance GPU implementation of L1-PCA is developed using CUDA that is several times faster than CPU implementations
    corecore