811 research outputs found

    KV-match: A Subsequence Matching Approach Supporting Normalization and Time Warping [Extended Version]

    Full text link
    The volume of time series data has exploded due to the popularity of new applications, such as data center management and IoT. Subsequence matching is a fundamental task in mining time series data. All index-based approaches only consider raw subsequence matching (RSM) and do not support subsequence normalization. UCR Suite can deal with normalized subsequence match problem (NSM), but it needs to scan full time series. In this paper, we propose a novel problem, named constrained normalized subsequence matching problem (cNSM), which adds some constraints to NSM problem. The cNSM problem provides a knob to flexibly control the degree of offset shifting and amplitude scaling, which enables users to build the index to process the query. We propose a new index structure, KV-index, and the matching algorithm, KV-match. With a single index, our approach can support both RSM and cNSM problems under either ED or DTW distance. KV-index is a key-value structure, which can be easily implemented on local files or HBase tables. To support the query of arbitrary lengths, we extend KV-match to KV-matchDP_{DP}, which utilizes multiple varied-length indexes to process the query. We conduct extensive experiments on synthetic and real-world datasets. The results verify the effectiveness and efficiency of our approach.Comment: 13 page

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home

    Fast and scalable similarity and correlation queries on time series data

    Get PDF
    Time series are ubiquitous in many fields ranging from financial applications such as the stock market to scientific applications and sensor data. Hence, there has been an increasing interest in time series indexing over the past years because there has been an increasing need for fast methods for analyzing and querying these datasets that are often too big for practical brute force analysis. We start with the main contributions to the field over the past decade and a half. We will then proceed by describing new solutions to correlation analysis on time series datasets using an existing index called the Compact Multi-Resolution Index (CMRI). We describe new algorithms for indexed correlation analysis using Pearson's product moment coefficient and using the multidimensional correlation coefficient and introduce a new measure called Dynamic Time Warping Correlation (DTWC) based on Dynamic Time Warping (DTW). In addition to these linear correlation algorithms, we propose an algorithm called rank order correlation on a non-linear/monotonic measure. To support these algorithms, we revised the Compact Multi-Resolution Index (CMRI) and propose a new index for time series datasets which improves over the sizes, speed and precision of CMRI. We call this index the reduced Compact Multi-Resolution Index (rCMRI). We evaluate the performance of rCMRI compared to CMRI for range queries and range query based queries

    Time Series Similarity Search in Distributed Key-Value Data Stores Using R-Trees

    Get PDF
    Time series data are sequences of data points collected at certain time intervals. The advance in mobile and sensor technologies has led to rapid growth in the available amount of time series data. The ability to search large time series data sets can be extremely useful in many applications. In healthcare, a system monitoring vital signals can perform a search against the past data and identify possible health threatening conditions. In engineering, a system can analyze performances of complicated equipment and identify possible failure situations or needs of maintenance based on historical data. Existing search methods for time series data are limited in many ways. Systems utilizing memory-bound or disk-bound indexes are restricted by the resources of a single machine or hard drive. Systems that do not use indexes must search through the entire database whenever a search is requested. The proposed system uses multidimensional index in the distributed storage environment to break the bound of one physical machine and allow for high data scalability. Utilizing an index allows the system to locate the patterns similar to the query without having to examine the entire dataset, which can significantly reduce the amount of computing resources required. The system uses an Apache HBase distributed key-value database to store the index and time series data across a cluster of machines. Evaluations were conducted to examine the system’s performance using synthesized data up to 30 million data points. The evaluation results showed that, despite some drawbacks inherited from an R-tree data structure, the system can efficiently search and retrieve patterns in large time series datasets
    • …
    corecore