1,404 research outputs found

    Comparison of prefrontal atrophy and episodic memory performance in dysexecutive Alzheimer’s disease and behavioural-variant frontotemporal dementia

    Get PDF
    Alzheimer’s disease (AD) sometimes presents with prominent executive dysfunction and associated prefrontal cortex atrophy. The impact of such executive deficits on episodic memory performance as well as their neural correlates in AD, however, remains unclear. The aim of the current study was to investigate episodic memory and brain atrophy in AD patients with relatively spared executive functioning (SEF-AD; n = 12) and AD patients with relatively impaired executive functioning (IEF-AD; n = 23). We also compared the AD subgroups with a group of behavioral-variant frontotemporal dementia patients (bvFTD; n = 22), who typically exhibit significant executive deficits, and age-matched healthy controls (n = 38). On cognitive testing, the three patient groups showed comparable memory profiles on standard episodic memory tests, with significant impairment relative to controls. Voxel-based morphometry analyses revealed extensive prefrontal and medial temporal lobe atrophy in IEF-AD and bvFTD, whereas this was limited to the middle frontal gyrus and hippocampus in SEF-AD. Moreover, the additional prefrontal atrophy in IEF-AD and bvFTD correlated with memory performance, whereas this was not the case for SEF-AD. These findings indicate that IEF-AD patients show prefrontal atrophy in regions similar to bvFTD, and suggest that this contributes to episodic memory performance. This has implications for the differential diagnosis of bvFTD and subtypes of AD

    Scene construction impairments in Alzheimer's disease – A unique role for the posterior cingulate cortex

    Get PDF
    Episodic memory dysfunction represents one of the most prominent and characteristic clinical features of patients with Alzheimer's disease (AD), attributable to the degeneration of medial temporal and posterior parietal regions of the brain. Recent studies have demonstrated marked impairments in the ability to envisage personally relevant events in the future in AD. It remains unclear, however, whether AD patients can imagine fictitious scenes free from temporal constraints, a process that is proposed to rely fundamentally upon the integrity of the hippocampus. The objective of the present study was to investigate the capacity for atemporal scene construction, and its associated neural substrates, in AD. Fourteen AD patients were tested on the scene construction task and their performance was contrasted with 14 age- and education-matched healthy older Control participants. Scene construction performance was strikingly compromised in the AD group, with significant impairments evident for provision of contextual details, spatial coherence, and the overall richness of the imagined experience. Voxel-based morphometry analyses based on structural MRI revealed significant associations between scene construction capacity and atrophy in posterior parietal and lateral temporal brain structures in AD. In contrast, scene construction performance in Controls was related to integrity of frontal, parietal, and medial temporal structures, including the parahippocampal gyrus and posterior hippocampus. The posterior cingulate cortex (PCC) emerged as the common region implicated for scene construction performance across participant groups. Our study highlights the importance of regions specialised for spatial and contextual processing for the construction of atemporal scenes. Damage to these regions in AD compromises the ability to construct novel scenes, leading to the recapitulation of content from previously experienced events

    Survey on Early Detection of Alzhiemer’s Disease Using Capsule Neural Network

    Get PDF
    Alzheimer's disease (AD) is an disorder which is irreversible of the brain related to memory loss, mostly found in the old and aged population. Alzheimer's dementia results from the degeneration or loss of brain cells. The brain-imaging technologies most often used to diagnose AD is Magnetic resonance imaging (MRI). MRI or structural magnetic resonance is a very popular and actual technique used to diagnose AD. An MRI uses magnets and powerful radio waves to create a complete view of your brain. To actually detect the presence of Alzheimer’s, the MRI should me studied carefullyImplementation of CBIR Content Based Image Retrival which is a revolutionary computer aided diagnosis technique will create new abilities in MRI Magnetic resonance imaging in related image retrieval and training for recognition of development of AD in early stage

    The Semantic Memory Imaging In Late Life Pilot Study

    Get PDF
    Introduction: Several functional magnetic resonance imaging (fMRI) studies have analyzed the famous name discrimination task (FNDT), an uncontrolled semantic memory probe requiring discrimination between famous and unfamiliar individuals. Completion of this simple task recruits a semantic memory network that has shown utility in determining risk for Alzheimer\u27s disease (AD). Specific semantic memory probes using biographical information associated with famous individuals may build on previous findings and yield superior information regarding risk for AD. Method: Sixteen cognitively intact elders completed the FNDT and two novel tasks during fMRI: Categories (matching famous individuals to occupational categories) and Attributes (matching famous individuals to specific bodies of work or life events). Five participants were carriers of the Apolipoprotein E (APOE) ε4 allele. Results: Relative to their respective control tasks, participants recruited brain regions for all three tasks consistent with previous research, including left temporal lobe, left angular gyrus, precuneus, posterior cingulate, and anterior cingulate. The FNDT generated significantly more activity than the other tasks in anterior cingulate and several posterior regions. Categories had significantly lesser activity than other tasks in inferior parietal lobe, precuneus, and posterior cingulate. Attributes, the most specific semantic probe, demonstrated the strongest left lateralization with significantly greater activity in left inferior frontal gyrus and anterior temporal lobe. APOE ε4 carriers had regions with greater activity across all three tasks, with the greatest number of regions for Attributes, including in left anterior temporal lobe. Discussion: This pilot study identified neural correlates of different levels of semantic processing. The FNDT, an unconstrained semantic knowledge probe, demonstrated greater activity across most regions. The Attributes task, a specific semantic probe, had focused left-lateralized activity, including anterior temporal lobe and inferior frontal gyrus. APOE ε4 carriers demonstrated significantly greater activity in left anterior temporal lobe during Attributes only, demonstrating this task\u27s potential utility for determination of AD risk

    Association between precuneus volume and autobiographical memory impairment in posterior cortical atrophy: Beyond the visual syndrome

    Get PDF
    Posterior cortical atrophy is a neurodegenerative syndrome characterised by progressive disruption of visual and perceptual processing, associated with atrophy in the parieto-occipital cortex. Current diagnostic criteria describe relative sparing of episodic memory function, but recent findings suggest that anterograde memory is often impaired. Whether these deficits extend to remote memory has not been addressed. A large body of evidence suggests that the recollection of an autobiographical event from the remote past coincides with the successful retrieval of visual images. We hypothesised that the profound visual processing deficits in posterior cortical atrophy would result in impaired autobiographical memory retrieval. Fourteen posterior cortical atrophy patients, eighteen typical Alzheimer's disease patients and twenty-eight healthy controls completed the Autobiographical Interview. Autobiographical memory in posterior cortical atrophy was characterised by a striking loss of internal, episodic detail relative to controls and to same extent as typical Alzheimer's disease patients, in conjunction with an increase in external details tangential to the memory described. The memory narratives of posterior cortical atrophy patients showed a specific reduction in spatiotemporal and perceptual detail. Voxel-based morphometry analysis revealed atrophy of the parieto-occipital cortices in posterior cortical atrophy but relatively spared hippocampi bilaterally, compared with characteristic atrophy of the medial temporal lobes in typical Alzheimer's disease. Analysis of brain regions showing posterior cortical atrophy-specific atrophy revealed a correlation between perceptual details in autobiographical memory and grey matter density in the right precuneus. This study demonstrates remote memory impairment in posterior cortical atrophy despite relatively preserved medial temporal lobe structures. The results demonstrate, for the first time, profound autobiographical memory impairment in PCA and suggest that this is driven by the well-recognised deficits in higher-order visual processing. The findings are discussed in the context of posterior parietal contributions to imagery and memory, and the clinical implications of autobiographical memory impairment for diagnostic and management protocols in posterior cortical atrophy

    Increased Functional Connectivity in the Default Mode Network in Mild Cognitive Impairment: A Maladaptive Compensatory Mechanism Associated with Poor Semantic Memory Performance

    Get PDF
    Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population

    Structural anatomical investigation of long-term memory deficit in behavioural frontotemporal dementia

    Get PDF
    Although a growing body of work has shown that behavioral variant frontotemporal dementia (bvFTD) could present with severe amnesia in approximately half of cases, memory assessment is currently the clinical standard to distinguish bvFTD from Alzheimer's disease (AD). Thus, the concept of "relatively preserved episodic memory" in bvFTD remains the basis of its clinical distinction from AD and a criterion for bvFTD's diagnosis. This view is supported by the idea that bvFTD is not characterized by genuine amnesia and hippocampal degeneration, by contrast to AD. In this multicenter study, we aimed to investigate the neural correlates of memory performance in bvFTD as assessed by the Free and Cued Selective Reminding Test (FCSRT). Imaging explorations followed a two-step procedure, first relying on a visual rating of atrophy of 35 bvFTD and 34ADpatients' MRI, contrasted with 29 controls; and then using voxel-based morphometry (VBM) in a subset of bvFTD patients. Results showed that 43% of bvFTD patients presented with a genuine amnesia. Data-driven analysis on visual rating data showed that, in bvFTD, memory recall & storage performances were significantly predicted by atrophy in rostral prefrontal and hippocampal/perihippocampal regions, similar to mild AD. VBM results in bvFTD (p(FWE)<0.05) showed similar prefrontal and hippocampal regions in addition to striatal and lateral temporal involvement. Our findingsDistALZ CONICET CONICYT/FONDECYT 1170010 1160940 FONCyT, PICT 2012-0412 2012-1309 CONICYT/FONDAP 15150012 INECO Foundatio
    • …
    corecore