232 research outputs found

    Model predictive emissions control of a diesel engine airpath: Design and experimental evaluation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163480/2/rnc5188.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163480/1/rnc5188_am.pd

    Explicit Nonlinear Model Predictive Control of the Air Path of a Turbocharged Spark-Ignited Engine

    Get PDF
    International audiencePollutant emissions and fuel economy objectives have led car manufacturers to develop innovative and more sophisticated engine layouts. In order to reduce time-to-market and development costs, recent research has investigated the idea of a quasi-systematic engine control development approach. Model based approaches might not be the only possibility but they are clearly predetermined to considerably reduce test bench tuning work requirements. In this paper, we present the synthesis of a physics-based nonlinear model predictive control law especially designed for powertrain control. A binary search tree is used to ensure real-time implementation of the explicit form of the control law, computed by solving the associated multi-parametric nonlinear problem

    Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A nonlinear model predictive control (NMPC) for the thermal management (TM) of Plug-in Hybrid Electric Vehicles (PHEVs) is presented. TM in PHEVs is crucial to ensure good components performance and durability in all possible climate scenarios. A drawback of accurate TM solutions is the higher electrical consumption due to the increasing number of low voltage (LV) actuators used in the cooling circuits. Hence, more complex control strategies are needed for minimizing components thermal stress and at the same time electrical consumption. In this context, NMPC arises as a powerful method for achieving multiple objectives in Multiple input- Multiple output systems. This paper proposes an NMPC for the TM of the High Voltage (HV) battery and the power electronics (PE) cooling circuit in a PHEV. It distinguishes itself from the previously NMPC reported methods in the automotive sector by the complexity of its controlled plant which is highly nonlinear and controlled by numerous variables. The implemented model of the plant, which is based on experimental data and multi- domain physical equations, has been validated using six different driving cycles logged in a real vehicle, obtaining a maximum error, in comparison with the real temperatures, of 2C. For one of the six cycles, an NMPC software-in-the loop (SIL) is presented, where the models inside the controller and for the controlled plant are the same. This simulation is compared to the finite-state machine-based strategy performed in the real vehicle. The results show that NMPC keeps the battery at healthier temperatures and in addition reduces the cooling electrical consumption by more than 5%. In terms of the objective function, an accumulated and weighted sum of the two goals, this improvement amounts 30%. Finally, the online SIL presented in this paper, suggests that the used optimizer is fast enough for a future implementation in the vehicle.Accepted versio

    Deep Learning based Model Predictive Control for Compression Ignition Engines

    Full text link
    Machine learning (ML) and a nonlinear model predictive controller (NMPC) are used in this paper to minimize the emissions and fuel consumption of a compression ignition engine. In this work machine learning is applied in two methods. In the first application, ML is used to identify a model for implementation in model predictive control optimization problems. In the second application, ML is used as a replacement of the NMPC where the ML controller learns the optimal control action by imitating or mimicking the behavior of the model predictive controller. In this study, a deep recurrent neural network including long-short term memory (LSTM) layers are used to model the emissions and performance of an industrial 4.5 liter 4-cylinder Cummins diesel engine. This model is then used for model predictive controller implementation. Then, a deep learning scheme is deployed to clone the behavior of the developed controller. In the LSTM integration, a novel scheme is used by augmenting hidden and cell states of the network in an NMPC optimization problem. The developed LSTM-NMPC and the imitative NMPC are compared with the Cummins calibrated Engine Control Unit (ECU) model in an experimentally validated engine simulation platform. Results show a significant reduction in Nitrogen Oxides (\nox) emissions and a slight decrease in the injected fuel quantity while maintaining the same load. In addition, the imitative NMPC has a similar performance as the NMPC but with a two orders of magnitude reduction of the computation time.Comment: Submitted to Control engineering Practice (Submission date: March 9, 2022) Revised version (Submission date: June 18, 2022) Accepted on July 30, 202

    Low Complexity Model Predictive Control of a Diesel Engine Airpath.

    Full text link
    The diesel air path (DAP) system has been traditionally challenging to control due to its highly coupled nonlinear behavior and the need for constraints to be considered for driveability and emissions. An advanced control technology, model predictive control (MPC), has been viewed as a way to handle these challenges, however, current MPC strategies for the DAP are still limited due to the very limited computational resources in engine control units (ECU). A low complexity MPC controller for the DAP system is developed in this dissertation where, by "low complexity," it is meant that the MPC controller achieves tracking and constraint enforcement objectives and can be executed on a modern ECU within 200 microseconds, a computation budget set by Toyota Motor Corporation. First, an explicit MPC design is developed for the DAP. Compared to previous explicit MPC examples for the DAP, a significant reduction in computational complexity is achieved. This complexity reduction is accomplished through, first, a novel strategy of intermittent constraint enforcement. Then, through a novel strategy of gain scheduling explicit MPC, the memory usage of the controller is further reduced and closed-loop tracking performance is improved. Finally, a robust version of the MPC design is developed which is able to enforce constraints in the presence of disturbances without a significant increase in computational complexity compared to non-robust MPC. The ability of the controller to track set-points and enforce constraints is demonstrated in both simulations and experiments. A number of theoretical results pertaining to the gain scheduling strategy is also developed. Second, a nonlinear MPC (NMPC) strategy for the DAP is developed. Through various innovations, a NMPC controller for the DAP is constructed that is not necessarily any more computationally complex than linear explicit MPC and is characterized by a very streamlined process for implementation and calibration. A significant reduction in computational complexity is achieved through the novel combination of Kantorovich's method and constrained NMPC. Zero-offset steady state tracking is achieved through a novel NMPC problem formulation, rate-based NMPC. A comparison of various NMPC strategies and developments is presented illustrating how a low complexity NMPC strategy can be achieved.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120832/1/huxuli_1.pd

    Nonlinear Model Predictive Control of the Air Path of a Turbocharged Gasoline Engine Using Laguerre Functions

    Get PDF
    International audienceObjectives in terms of pollutant emissions and fuel consumption reduction have led car manufacturers to enhance the technical definitions of combustion engines. The latter should now be considered as multiple-input multiple-output nonlinear systems with saturated actuators. This considerably increases the challenge regarding the development of optimal control laws under the constraints of constant cost reductions in the automotive industry. In the present paper, the use of a nonlinear model predictive control (NMPC) scheme is studied for the air path control of a turbocharged gasoline engine. Specifically, a zero dimension physics-based model is combined with parameterization of the future control trajectory. The use of Laguerre polynomials is shown to increase flexibility for the future control trajectory at no cost in computational requirements. This increase in flexibility leads to an improvement of the transient response of the closed-loop with respect to traditional approaches. This practical application shows that this approach makes it easier to fine-tune the NMPC scheme when dealing with engine air path control

    Model Predictive Control of Modern High-Degree-of-Freedom Turbocharged Spark Ignited Engines with External Cooled EGR

    Get PDF
    The efficiency of modern downsized SI engines has been significantly improved using cooled Low-Pressure Exhaust Gas Recirculation, Turbocharging and Variable Valve Timing actuation. Control of these sub-systems is challenging due to their inter-dependence and the increased number of actuators associated with engine control. Much research has been done on developing algorithms which improve the transient turbocharged engine response without affecting fuel-economy. With the addition of newer technologies like external cooled EGR the control complexity has increased exponentially. This research proposes a methodology to evaluate the ability of a Model Predictive Controller to coordinate engine and air-path actuators simultaneously. A semi-physical engine model has been developed and analyzed for non-linearity. The computational burden of implementing this control law has been addressed by utilizing a semi-physical engine system model and basic analytical differentiation. The resulting linearization process requires less than 10% of the time required for widely used numerical linearization approach. Based on this approach a Nonlinear MPC-Quadratic Program has been formulated and solved with preliminary validation applied to a 1D Engine model followed by implementation on an experimental rapid prototyping control system. The MPC based control demonstrates the ability to co-ordinate different engine and air-path actuators simultaneously for torque-tracking with minimal constraint violation. Avenues for further improvement have been identified and discussed

    Flexible and robust control of heavy duty diesel engine airpath using data driven disturbance observers and GPR models

    Get PDF
    Diesel engine airpath control is crucial for modern engine development due to increasingly stringent emission regulations. This thesis aims to develop and validate a exible and robust control approach to this problem for speci cally heavy-duty engines. It focuses on estimation and control algorithms that are implementable to the current and next generation commercial electronic control units (ECU). To this end, targeting the control units in service, a data driven disturbance observer (DOB) is developed and applied for mass air ow (MAF) and manifold absolute pressure (MAP) tracking control via exhaust gas recirculation (EGR) valve and variable geometry turbine (VGT) vane. Its performance bene ts are demonstrated on the physical engine model for concept evaluation. The proposed DOB integrated with a discrete-time sliding mode controller is applied to the serial level engine control unit. Real engine performance is validated with the legal emission test cycle (WHTC - World Harmonized Transient Cycle) for heavy-duty engines and comparison with a commercially available controller is performed, and far better tracking results are obtained. Further studies are conducted in order to utilize capabilities of the next generation control units. Gaussian process regression (GPR) models are popular in automotive industry especially for emissions modeling but have not found widespread applications in airpath control yet. This thesis presents a GPR modeling of diesel engine airpath components as well as controller designs and their applications based on the developed models. Proposed GPR based feedforward and feedback controllers are validated with available physical engine models and the results have been very promisin
    corecore