3,494 research outputs found

    Quasi-optimal multiplication of linear differential operators

    Get PDF
    We show that linear differential operators with polynomial coefficients over a field of characteristic zero can be multiplied in quasi-optimal time. This answers an open question raised by van der Hoeven.Comment: To appear in the Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS'12

    Patching Colors with Tensors

    Get PDF

    Binary Determinantal Complexity

    Full text link
    We prove that for writing the 3 by 3 permanent polynomial as a determinant of a matrix consisting only of zeros, ones, and variables as entries, a 7 by 7 matrix is required. Our proof is computer based and uses the enumeration of bipartite graphs. Furthermore, we analyze sequences of polynomials that are determinants of polynomially sized matrices consisting only of zeros, ones, and variables. We show that these are exactly the sequences in the complexity class of constant free polynomially sized (weakly) skew circuits.Comment: 10 pages, C source code for the computation available as ancillary file

    A low multiplicative complexity fast recursive DCT-2 algorithm

    Full text link
    A fast Discrete Cosine Transform (DCT) algorithm is introduced that can be of particular interest in image processing. The main features of the algorithm are regularity of the graph and very low arithmetic complexity. The 16-point version of the algorithm requires only 32 multiplications and 81 additions. The computational core of the algorithm consists of only 17 nontrivial multiplications, the rest 15 are scaling factors that can be compensated in the post-processing. The derivation of the algorithm is based on the algebraic signal processing theory (ASP).Comment: 4 pages, 2 figure

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

    Full text link
    This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey FFT and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar

    Evaluating Matrix Circuits

    Full text link
    The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP\mathsf{coRP}, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group SL3(Z)\mathsf{SL}_3(\mathbb{Z}) is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in DET⊆NC2\mathsf{DET} \subseteq \mathsf{NC}^2. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits
    • …
    corecore