188 research outputs found

    Particle Swarm Optimisation in Practice: Multiple Applications in a Digital Microscope System

    Get PDF
    We demonstrate that particle swarm optimisation (PSO) can be used to solve a variety of problems arising during operation of a digital inspection microscope. This is a use case for the feasibility of heuristics in a real-world product. We show solutions to four measurement problems, all based on PSO. This allows for a compact software implementation solving different problems. We have found that PSO can solve a variety of problems with small software footprints and good results in a real-world embedded system. Notably, in the microscope application, this eliminates the need to return the device to the factory for calibration

    An Image Denoising Algorithm Based On Curvelet Transform

    Get PDF
    Aiming at the limitations of the wavelet transform in image denoising, this paper proposes a new image denoising algorithm based on curvelet transform mathematical method. In this paper, the feasibility of this method is proved by the experimental results. The experiment result shows that, using the proposed new algorithm can get high peak signal to noise ratio, visual effect is very good image

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Eddy current defect response analysis using sum of Gaussian methods

    Get PDF
    This dissertation is a study of methods to automatedly detect and produce approximations of eddy current differential coil defect signatures in terms of a summed collection of Gaussian functions (SoG). Datasets consisting of varying material, defect size, inspection frequency, and coil diameter were investigated. Dimensionally reduced representations of the defect responses were obtained utilizing common existing reduction methods and novel enhancements to them utilizing SoG Representations. Efficacy of the SoG enhanced representations were studied utilizing common Machine Learning (ML) interpretable classifier designs with the SoG representations indicating significant improvement of common analysis metrics

    Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion

    Get PDF
    A novel hybrid framework of optimized deep learning models combined with multi-sensor fusion is developed for condition diagnosis of concrete arch beam. The vibration responses of structure are first processed by principal component analysis for dimensionality reduction and noise elimination. Then, the deep network based on stacked autoencoders (SAE) is established at each sensor for initial condition diagnosis, where extracted principal components and corresponding condition categories are inputs and output, respectively. To enhance diagnostic accuracy of proposed deep SAE, an enhanced whale optimization algorithm is proposed to optimize network meta-parameters. Eventually, Dempster-Shafer fusion algorithm is employed to combine initial diagnosis results from each sensor to make a final diagnosis. A miniature structural component of Sydney Harbour Bridge with artificial multiple progressive damages is tested in laboratory. The results demonstrate that the proposed method can detect structural damage accurately, even under the condition of limited sensors and high levels of uncertainties

    Micro/Nano Manufacturing

    Get PDF
    Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies
    corecore