545 research outputs found

    A multi-hypothesis approach for range-only simultaneous localization and mapping with aerial robots

    Get PDF
    Los sistemas de Range-only SLAM (o RO-SLAM) tienen como objetivo la construcción de un mapa formado por la posición de un conjunto de sensores de distancia y la localización simultánea del robot con respecto a dicho mapa, utilizando únicamente para ello medidas de distancia. Los sensores de distancia son dispositivos capaces de medir la distancia relativa entre cada par de dispositivos. Estos sensores son especialmente interesantes para su applicación a vehículos aéreos debido a su reducido tamaño y peso. Además, estos dispositivos son capaces de operar en interiores o zonas con carencia de señal GPS y no requieren de una línea de visión directa entre cada par de dispositivos a diferencia de otros sensores como cámaras o sensores laser, permitiendo así obtener una lectura de datos continuada sin oclusiones. Sin embargo, estos sensores presentan un modelo de observación no lineal con una deficiencia de rango debido a la carencia de información de orientación relativa entre cada par de sensores. Además, cuando se incrementa la dimensionalidad del problema de 2D a 3D para su aplicación a vehículos aéreos, el número de variables ocultas del modelo aumenta haciendo el problema más costoso computacionalmente especialmente ante implementaciones multi-hipótesis. Esta tesis estudia y propone diferentes métodos que permitan la aplicación eficiente de estos sistemas RO-SLAM con vehículos terrestres o aéreos en entornos reales. Para ello se estudia la escalabilidad del sistema en relación al número de variables ocultas y el número de dispositivos a posicionar en el mapa. A diferencia de otros métodos descritos en la literatura de RO-SLAM, los algoritmos propuestos en esta tesis tienen en cuenta las correlaciones existentes entre cada par de dispositivos especialmente para la integración de medidas estÃa˛ticas entre pares de sensores del mapa. Además, esta tesis estudia el ruido y las medidas espúreas que puedan generar los sensores de distancia para mejorar la robustez de los algoritmos propuestos con técnicas de detección y filtración. También se proponen métodos de integración de medidas de otros sensores como cámaras, altímetros o GPS para refinar las estimaciones realizadas por el sistema RO-SLAM. Otros capítulos estudian y proponen técnicas para la integración de los algoritmos RO-SLAM presentados a sistemas con múltiples robots, así como el uso de técnicas de percepción activa que permitan reducir la incertidumbre del sistema ante trayectorias con carencia de trilateración entre el robot y los sensores de destancia estáticos del mapa. Todos los métodos propuestos han sido validados mediante simulaciones y experimentos con sistemas reales detallados en esta tesis. Además, todos los sistemas software implementados, así como los conjuntos de datos registrados durante la experimentación han sido publicados y documentados para su uso en la comunidad científica

    Sensor Path Planning for Emitter Localization

    Get PDF
    The localization of a radio frequency (RF) emitter is relevant in many military and civilian applications. The recent decade has seen a rapid progress in the development of small and mobile unmanned aerial vehicles (UAVs), which offer a way to perform emitter localization autonomously. The path a UAV travels influences the localization significantly, making path planning an important part of a mobile emitter localization system. The topic of this thesis is path planning for a UAV that uses bearing measurements to localize a stationary emitter. Using a directional antenna, the direction towards the target can be determined by the UAV rotating around its own vertical axis. During this rotation the UAV is required to remain at the same position, which induces a trade-off between movement and measurement that influences the optimal trajectories. This thesis derives a novel path planning algorithm for localizing an emitter with a UAV. It improves the current state of the art by providing a localization with defined accuracy in a shorter amount of time compared to other algorithms in simulations. The algorithm uses the policy rollout principle to perform a nonmyopic planning and to incorporate the uncertainty of the estimation process into its decision. The concept of an action selection algorithm for policy rollout is introduced, which allows the use of existing optimization algorithms to effectively search the action space. Multiple action selection algorithms are compared to optimize the speed of the path planning algorithm. Similarly, to reduce computational demand, an adaptive grid-based localizer has been developed. To evaluate the algorithm an experimental system has been built and the algorithm was tested on this system. Based on initial experiments, the path planning algorithm has been modified, including a minimal distance to the emitter and an outlier detection step. The resulting algorithm shows promising results in experimental flights

    Belief-space Planning for Active Visual SLAM in Underwater Environments.

    Full text link
    Autonomous mobile robots operating in a priori unknown environments must be able to integrate path planning with simultaneous localization and mapping (SLAM) in order to perform tasks like exploration, search and rescue, inspection, reconnaissance, target-tracking, and others. This level of autonomy is especially difficult in underwater environments, where GPS is unavailable, communication is limited, and environment features may be sparsely- distributed. In these situations, the path taken by the robot can drastically affect the performance of SLAM, so the robot must plan and act intelligently and efficiently to ensure successful task completion. This document proposes novel research in belief-space planning for active visual SLAM in underwater environments. Our motivating application is ship hull inspection with an autonomous underwater robot. We design a Gaussian belief-space planning formulation that accounts for the randomness of the loop-closure measurements in visual SLAM and serves as the mathematical foundation for the research in this thesis. Combining this planning formulation with sampling-based techniques, we efficiently search for loop-closure actions throughout the environment and present a two-step approach for selecting revisit actions that results in an opportunistic active SLAM framework. The proposed active SLAM method is tested in hybrid simulations and real-world field trials of an underwater robot performing inspections of a physical modeling basin and a U.S. Coast Guard cutter. To reduce computational load, we present research into efficient planning by compressing the representation and examining the structure of the underlying SLAM system. We propose the use of graph sparsification methods online to reduce complexity by planning with an approximate distribution that represents the original, full pose graph. We also propose the use of the Bayes tree data structure—first introduced for fast inference in SLAM—to perform efficient incremental updates when evaluating candidate plans that are similar. As a final contribution, we design risk-averse objective functions that account for the randomness within our planning formulation. We show that this aversion to uncertainty in the posterior belief leads to desirable and intuitive behavior within active SLAM.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133303/1/schaves_1.pd

    Contributions to autonomous robust navigation of mobile robots in industrial applications

    Get PDF
    151 p.Un aspecto en el que las plataformas móviles actuales se quedan atrás en comparación con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta revolución industrial trajo consigo la implantación de maquinaria en la mayor parte de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas por los sensores y al dinamismo existente en la mayoría de entornos. Por este motivo, gran parte de este trabajo se centra en cuantificar el error cometido por los principales métodos de mapeado y localización de robots móviles,ofreciendo distintas alternativas para la mejora del posicionamiento.Asimismo, las principales fuentes de información con las que los robots móviles son capaces de realizarlas funciones descritas son los sensores exteroceptivos, los cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón, algunos métodos son muy dependientes del escenario en el que se han desarrollado, y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas móviles generan un mapa que representa el entorno que les rodea, y fundamentan en este muchos de sus cálculos para realizar acciones como navegar. Dicha generación es un proceso que requiere de intervención humana en la mayoría de casos y que tiene una gran repercusión en el posterior funcionamiento del robot. En la última parte del presente trabajo, se propone un método que pretende optimizar este paso para así generar un modelo más rico del entorno sin requerir de tiempo adicional para ello
    corecore