33,747 research outputs found

    Sketching and streaming algorithms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 136-145).A sketch of a dataset is a small-space data structure supporting some prespecified set of queries (and possibly updates) while consuming space substantially sublinear in the space required to actually store all the data. Furthermore, it is often desirable, or required by the application, that the sketch itself be computable by a small-space algorithm given just one pass over the data, a so-called streaming algorithm. Sketching and streaming have found numerous applications in network traffic monitoring, data mining, trend detection, sensor networks, and databases. In this thesis, I describe several new contributions in the area of sketching and streaming algorithms. The first space-optimal streaming algorithm for the distinct elements problem. Our algorithm also achieves 0(1) update and reporting times. A streaming algorithm for Hamming norm estimation in the turnstile model which achieves the best known space complexity. The first space-optimal algorithm for pth moment estimation in turnstile streams for 0 < p < 2, with matching lower bounds, and another space-optimal algorithm which also has a fast O(log²(1/[epsilon]) log log(1[epsilon])) update time for (1+/-[epsilon])- approximation. A general reduction from empirical entropy estimation in turnstile streams to moment estimation, providing the only known near-optimal space-complexity upper bound for this problem. A proof of the Johnson-Lindenstrauss lemma where every matrix in the support of the embedding distribution is much sparser than previous known constructions. In particular, to achieve distortion (1+/-[epsilon]) with probability 1-[delta], we embed into optimal dimension 0([epsilon]-²log(1/[delta])) and such that every matrix in the support of the distribution has 0([epsilon]-¹ log(1/[delta])) non-zero entries per column.by Jelani Nelson.Ph.D

    Towards Optimal Moment Estimation in Streaming and Distributed Models

    Get PDF
    One of the oldest problems in the data stream model is to approximate the p-th moment ||X||_p^p = sum_{i=1}^n X_i^p of an underlying non-negative vector X in R^n, which is presented as a sequence of poly(n) updates to its coordinates. Of particular interest is when p in (0,2]. Although a tight space bound of Theta(epsilon^-2 log n) bits is known for this problem when both positive and negative updates are allowed, surprisingly there is still a gap in the space complexity of this problem when all updates are positive. Specifically, the upper bound is O(epsilon^-2 log n) bits, while the lower bound is only Omega(epsilon^-2 + log n) bits. Recently, an upper bound of O~(epsilon^-2 + log n) bits was obtained under the assumption that the updates arrive in a random order. We show that for p in (0, 1], the random order assumption is not needed. Namely, we give an upper bound for worst-case streams of O~(epsilon^-2 + log n) bits for estimating |X |_p^p. Our techniques also give new upper bounds for estimating the empirical entropy in a stream. On the other hand, we show that for p in (1,2], in the natural coordinator and blackboard distributed communication topologies, there is an O~(epsilon^-2) bit max-communication upper bound based on a randomized rounding scheme. Our protocols also give rise to protocols for heavy hitters and approximate matrix product. We generalize our results to arbitrary communication topologies G, obtaining an O~(epsilon^2 log d) max-communication upper bound, where d is the diameter of G. Interestingly, our upper bound rules out natural communication complexity-based approaches for proving an Omega(epsilon^-2 log n) bit lower bound for p in (1,2] for streaming algorithms. In particular, any such lower bound must come from a topology with large diameter

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds
    corecore