147 research outputs found

    Fast methods for denoising matrix completion formulations, with applications to robust seismic data interpolation

    Full text link
    Recent SVD-free matrix factorization formulations have enabled rank minimization for systems with millions of rows and columns, paving the way for matrix completion in extremely large-scale applications, such as seismic data interpolation. In this paper, we consider matrix completion formulations designed to hit a target data-fitting error level provided by the user, and propose an algorithm called LR-BPDN that is able to exploit factorized formulations to solve the corresponding optimization problem. Since practitioners typically have strong prior knowledge about target error level, this innovation makes it easy to apply the algorithm in practice, leaving only the factor rank to be determined. Within the established framework, we propose two extensions that are highly relevant to solving practical challenges of data interpolation. First, we propose a weighted extension that allows known subspace information to improve the results of matrix completion formulations. We show how this weighting can be used in the context of frequency continuation, an essential aspect to seismic data interpolation. Second, we propose matrix completion formulations that are robust to large measurement errors in the available data. We illustrate the advantages of LR-BPDN on the collaborative filtering problem using the MovieLens 1M, 10M, and Netflix 100M datasets. Then, we use the new method, along with its robust and subspace re-weighted extensions, to obtain high-quality reconstructions for large scale seismic interpolation problems with real data, even in the presence of data contamination.Comment: 26 pages, 13 figure

    Basis Pursuit Denoise with Nonsmooth Constraints

    Full text link
    Level-set optimization formulations with data-driven constraints minimize a regularization functional subject to matching observations to a given error level. These formulations are widely used, particularly for matrix completion and sparsity promotion in data interpolation and denoising. The misfit level is typically measured in the l2 norm, or other smooth metrics. In this paper, we present a new flexible algorithmic framework that targets nonsmooth level-set constraints, including L1, Linf, and even L0 norms. These constraints give greater flexibility for modeling deviations in observation and denoising, and have significant impact on the solution. Measuring error in the L1 and L0 norms makes the result more robust to large outliers, while matching many observations exactly. We demonstrate the approach for basis pursuit denoise (BPDN) problems as well as for extensions of BPDN to matrix factorization, with applications to interpolation and denoising of 5D seismic data. The new methods are particularly promising for seismic applications, where the amplitude in the data varies significantly, and measurement noise in low-amplitude regions can wreak havoc for standard Gaussian error models.Comment: 11 pages, 10 figure

    Beating level-set methods for 3D seismic data interpolation: a primal-dual alternating approach

    Full text link
    Acquisition cost is a crucial bottleneck for seismic workflows, and low-rank formulations for data interpolation allow practitioners to `fill in' data volumes from critically subsampled data acquired in the field. Tremendous size of seismic data volumes required for seismic processing remains a major challenge for these techniques. We propose a new approach to solve residual constrained formulations for interpolation. We represent the data volume using matrix factors, and build a block-coordinate algorithm with constrained convex subproblems that are solved with a primal-dual splitting scheme. The new approach is competitive with state of the art level-set algorithms that interchange the role of objectives with constraints. We use the new algorithm to successfully interpolate a large scale 5D seismic data volume, generated from the geologically complex synthetic 3D Compass velocity model, where 80% of the data has been removed.Comment: 16 pages, 7 figure

    Simultaneous shot inversion for nonuniform geometries using fast data interpolation

    Full text link
    Stochastic optimization is key to efficient inversion in PDE-constrained optimization. Using 'simultaneous shots', or random superposition of source terms, works very well in simple acquisition geometries where all sources see all receivers, but this rarely occurs in practice. We develop an approach that interpolates data to an ideal acquisition geometry while solving the inverse problem using simultaneous shots. The approach is formulated as a joint inverse problem, combining ideas from low-rank interpolation with full-waveform inversion. Results using synthetic experiments illustrate the flexibility and efficiency of the approach.Comment: 16 pages, 10 figure

    Relaxation algorithms for matrix completion, with applications to seismic travel-time data interpolation

    Full text link
    Travel time tomography is used to infer the underlying three-dimensional wavespeed structure of the Earth by fitting seismic travel time data collected at surface stations. Data interpolation and denoising techniques are important pre-processing steps that use prior knowledge about the data, including parsimony in the frequency and wavelet domains, low-rank structure of matricizations, and local smoothness. We show how local smoothness structure can be combined with low rank constraints using level-set optimization formulations, and develop a new relaxation algorithm that can efficiently solve these joint problems. In the seismology setting, we use the approach to interpolate missing stations and de-noise observed stations. The new approach is competitive with alternative algorithms, and offers new functionality to interpolate observed data using both smoothness and low rank structure in the presence of data fitting constraints.Comment: 22 pages, 10 figure

    A Unified Framework for Sparse Relaxed Regularized Regression: SR3

    Full text link
    Regularized regression problems are ubiquitous in statistical modeling, signal processing, and machine learning. Sparse regression in particular has been instrumental in scientific model discovery, including compressed sensing applications, variable selection, and high-dimensional analysis. We propose a broad framework for sparse relaxed regularized regression, called SR3. The key idea is to solve a relaxation of the regularized problem, which has three advantages over the state-of-the-art: (1) solutions of the relaxed problem are superior with respect to errors, false positives, and conditioning, (2) relaxation allows extremely fast algorithms for both convex and nonconvex formulations, and (3) the methods apply to composite regularizers such as total variation (TV) and its nonconvex variants. We demonstrate the advantages of SR3 (computational efficiency, higher accuracy, faster convergence rates, greater flexibility) across a range of regularized regression problems with synthetic and real data, including applications in compressed sensing, LASSO, matrix completion, TV regularization, and group sparsity. To promote reproducible research, we also provide a companion MATLAB package that implements these examples.Comment: 19 pages, 14 figure

    Dual Smoothing and Level Set Techniques for Variational Matrix Decomposition

    Full text link
    We focus on the robust principal component analysis (RPCA) problem, and review a range of old and new convex formulations for the problem and its variants. We then review dual smoothing and level set techniques in convex optimization, present several novel theoretical results, and apply the techniques on the RPCA problem. In the final sections, we show a range of numerical experiments for simulated and real-world problems.Comment: 38 pages, 10 figures. arXiv admin note: text overlap with arXiv:1406.108

    Algorithms and software for projections onto intersections of convex and non-convex sets with applications to inverse problems

    Full text link
    We propose algorithms and software for computing projections onto the intersection of multiple convex and non-convex constraint sets. The software package, called SetIntersectionProjection, is intended for the regularization of inverse problems in physical parameter estimation and image processing. The primary design criterion is working with multiple sets, which allows us to solve inverse problems with multiple pieces of prior knowledge. Our algorithms outperform the well known Dykstra's algorithm when individual sets are not easy to project onto because we exploit similarities between constraint sets. Other design choices that make the software fast and practical to use, include recently developed automatic selection methods for auxiliary algorithm parameters, fine and coarse grained parallelism, and a multilevel acceleration scheme. We provide implementation details and examples that show how the software can be used to regularize inverse problems. Results show that we benefit from working with all available prior information and are not limited to one or two regularizers because of algorithmic, computational, or hyper-parameter selection issues.Comment: 37 pages, 9 figure

    Unified Scalable Equivalent Formulations for Schatten Quasi-Norms

    Full text link
    The Schatten quasi-norm can be used to bridge the gap between the nuclear norm and rank function, and is the tighter approximation to matrix rank. However, most existing Schatten quasi-norm minimization (SQNM) algorithms, as well as for nuclear norm minimization, are too slow or even impractical for large-scale problems, due to the SVD or EVD of the whole matrix in each iteration. In this paper, we rigorously prove that for any p, p1, p2>0 satisfying 1/p=1/p1+1/p2, the Schatten-p quasi-norm of any matrix is equivalent to minimizing the product of the Schatten-p1 norm (or quasi-norm) and Schatten-p2 norm (or quasi-norm) of its two factor matrices. Then we present and prove the equivalence relationship between the product formula of the Schatten quasi-norm and its weighted sum formula for the two cases of p1 and p2: p1=p2 and p1\neq p2. In particular, when p>1/2, there is an equivalence between the Schatten-p quasi-norm of any matrix and the Schatten-2p norms of its two factor matrices, where the widely used equivalent formulation of the nuclear norm can be viewed as a special case. That is, various SQNM problems with p>1/2 can be transformed into the one only involving smooth, convex norms of two factor matrices, which can lead to simpler and more efficient algorithms than conventional methods. We further extend the theoretical results of two factor matrices to the cases of three and more factor matrices, from which we can see that for any 0<p<1, the Schatten-p quasi-norm of any matrix is the minimization of the mean of the Schatten-(p3+1)p norms of all factor matrices, where p3 denotes the largest integer not exceeding 1/p. In other words, for any 0<p<1, the SQNM problem can be transformed into an optimization problem only involving the smooth, convex norms of multiple factor matrices.Comment: 21 pages. CUHK Technical Report CSE-ShangLC20160307, March 7, 201

    Finding Low-Rank Solutions via Non-Convex Matrix Factorization, Efficiently and Provably

    Full text link
    A rank-rr matrix XRm×nX \in \mathbb{R}^{m \times n} can be written as a product UVU V^\top, where URm×rU \in \mathbb{R}^{m \times r} and VRn×rV \in \mathbb{R}^{n \times r}. One could exploit this observation in optimization: e.g., consider the minimization of a convex function f(X)f(X) over rank-rr matrices, where the set of rank-rr matrices is modeled via the factorization UVUV^\top. Though such parameterization reduces the number of variables, and is more computationally efficient (of particular interest is the case rmin{m,n}r \ll \min\{m, n\}), it comes at a cost: f(UV)f(UV^\top) becomes a non-convex function w.r.t. UU and VV. We study such parameterization for optimization of generic convex objectives ff, and focus on first-order, gradient descent algorithmic solutions. We propose the Bi-Factored Gradient Descent (BFGD) algorithm, an efficient first-order method that operates on the U,VU, V factors. We show that when ff is (restricted) smooth, BFGD has local sublinear convergence, and linear convergence when ff is both (restricted) smooth and (restricted) strongly convex. For several key applications, we provide simple and efficient initialization schemes that provide approximate solutions good enough for the above convergence results to hold.Comment: 45 page
    corecore