3,682 research outputs found

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Analysis of Multi-Hop Emergency Message Propagation in Vehicular Ad Hoc Networks

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are attracting the attention of researchers, industry, and governments for their potential of significantly increasing the safety level on the road. In order to understand whether VANETs can actually realize this goal, in this paper we analyze the dynamics of multihop emergency message dissemination in VANETs. Under a probabilistic wireless channel model that accounts for interference, we derive lower bounds on the probability that a car at distance d from the source of the emergency message correctly receives the message within time t. Besides d and t, this probability depends also on 1-hop channel reliability, which we model as a probability value p, and on the message dissemination strategy. Our bounds are derived for an idealized dissemination strategy which ignores interference, and for two provably near-optimal dissemination strategies under protocol interference. The bounds derived in the first part of the paper are used to carefully analyze the tradeoff between the safety level on the road (modeled by parameters d and t), and the value of 1-hop message reliability p. The analysis of this tradeoff discloses several interesting insights that can be very useful in the design of practical emergency message dissemination strategies

    Information Spreading in Stationary Markovian Evolving Graphs

    Full text link
    Markovian evolving graphs are dynamic-graph models where the links among a fixed set of nodes change during time according to an arbitrary Markovian rule. They are extremely general and they can well describe important dynamic-network scenarios. We study the speed of information spreading in the "stationary phase" by analyzing the completion time of the "flooding mechanism". We prove a general theorem that establishes an upper bound on flooding time in any stationary Markovian evolving graph in terms of its node-expansion properties. We apply our theorem in two natural and relevant cases of such dynamic graphs. "Geometric Markovian evolving graphs" where the Markovian behaviour is yielded by "n" mobile radio stations, with fixed transmission radius, that perform independent random walks over a square region of the plane. "Edge-Markovian evolving graphs" where the probability of existence of any edge at time "t" depends on the existence (or not) of the same edge at time "t-1". In both cases, the obtained upper bounds hold "with high probability" and they are nearly tight. In fact, they turn out to be tight for a large range of the values of the input parameters. As for geometric Markovian evolving graphs, our result represents the first analytical upper bound for flooding time on a class of concrete mobile networks.Comment: 16 page
    • …
    corecore