2,589 research outputs found

    Fast quasi-synchronous harmonic algorithm based on weight window function- mixed radix FFT

    Get PDF
    According to the requirements of IEC61850-9-2LE, digital energy metering devices mainly adopt 80×fr fixed sampling rate. When the harmonic analysis is carried out under asynchronous sampling, it will produce large errors due to spectral leakage. Quasi-Synchronous Algorithm has high accuracy, but the calculation process is complicated and the hardware overheads are high. Based on the characteristics of digital energy metering devices, this paper puts forward a Fast Quasi-Synchronous Harmonic Algorithm using weight window function combined with Mixed Radix Fast Fourier Transform Algorithm. It will reduce the calculation by more than 94%. Compared with the Triangle/Hanning/Nuttall4(III)-Windowed Interpolated FFT Algorithm, the proposed algorithm will perform better in accuracy and has the feature that the more asynchronous of the sampling, the more obvious the error will be

    Analysis of surface roughness wake fields and longitudinal phase space in a linear electron accelerator

    Get PDF

    Femtosecond optical parametric oscillator frequency combs for coherent pulse synthesis

    Get PDF
    Coherent pulse synthesis takes as its objective the piecewise assembly of a sequence of identical broadband pulses from two or more mutually-coherent sequences of narrowband pulses. The requirements for pulse synthesis are that the parent pulses share the same repetition frequency, are phase coherent and have low mutual timing jitter over the required observation time. The work carried out in this thesis explored the requirements for broadband coherent pulse synthesis between the multiple visible outputs of a synchronously pumped femtosecond optical parametric oscillator. A femtosecond Ti:sapphire laser was characterised and used to pump a PPKTP-based OPO that produced a number of second-harmonic and sum-frequency mixing outputs across the visible region. Using a novel lock-to-zero CEO stabilisation technique, broadband phase coherence was established between all the pulses on the optical bench, producing the broadest zero-offset frequency comb to date. Employing a common optical path for all the pulses provided common-mode rejection of noise, ensuring less than 150 attoseconds of timing jitter between the pulses over a 1 second observation window. The parent pulses were compressed and their relative delays altered in a quasi-common path prism delay line, allowing pulse synthesis at a desired reference plane

    Computational and Numerical Simulations

    Get PDF
    Computational and Numerical Simulations is an edited book including 20 chapters. Book handles the recent research devoted to numerical simulations of physical and engineering systems. It presents both new theories and their applications, showing bridge between theoretical investigations and possibility to apply them by engineers of different branches of science. Numerical simulations play a key role in both theoretical and application oriented research

    The application of a deterministic ray launching algorithm for the prediction of radio channel characteristics in small-cell environments

    Get PDF
    Propagation characteristics play a fundamental role in the design and implementation of radio systems. The application of broadband digital data services within the cordless environment requires close consideration of the dispersive nature of radio channels. A prediction algorithm is presented such that propagation characteristics can be estimated for small-cell high-data-rate systems. Through the use of geometric optics and geometric theory of diffraction the algorithm performs ray launching techniques in order to evaluate reflected, transmitted, and diffracted rays from a simplified description of a given environment. Both modeled and measured results are presented demonstrating the model's ability to predict typical rms delay spread values

    EMC in Power Electronics and PCB Design

    Get PDF
    This dissertation consists of two parts. Part I is about Electromagnetic Compatibility (EMC) in power electronics and part II is about the Maximum Radiated Electromagnetic Emissions Calculator (MREMC), which is a software tool for EMC in printed circuit board (PCB) design. Switched-mode power converters can be significant sources of electromagnetic fields that interfere with the proper operation of nearby circuits or distant radio receivers. Part I of this dissertation provides comprehensive and organized information on the latest EMC developments in power converters. It describes and evaluates different technologies to ensure that power converters meet electromagnetic compatibility requirements. Chapters 2 and 3 describe EMC noise sources and coupling mechanisms in power converters. Chapter 4 reviews the measurements used to characterize and troubleshoot EMC problems. Chapters 5 - 8 cover passive filter solutions, active filter solutions, noise cancellation methods and reduced-noise driving schemes. Part II describes the methods used, calculations made, and implementation details of the MREMC, which is a software tool that allows the user to calculate the maximum possible radiated emissions that could occur due to specific source geometries on a PCB. Chapters 9 - 13 covers the I/O coupling EMI algorithm, Common-mode EMI algorithm, Power Bus EMI algorithm and Differential-Mode EMI algorithm used in the MREMC

    A scalable distributed positioning system augmenting WiFi technology

    Get PDF
    corecore