442 research outputs found

    Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging

    Get PDF
    Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5T and 3T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2% - 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 minutes. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.Comment: 43 pages, 12 Figures, 5 Table

    3D Shape Modeling Using High Level Descriptors

    Get PDF

    Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    Get PDF

    Entropy-difference based stereo error detection

    Full text link
    Stereo depth estimation is error-prone; hence, effective error detection methods are desirable. Most such existing methods depend on characteristics of the stereo matching cost curve, making them unduly dependent on functional details of the matching algorithm. As a remedy, we propose a novel error detection approach based solely on the input image and its depth map. Our assumption is that, entropy of any point on an image will be significantly higher than the entropy of its corresponding point on the image's depth map. In this paper, we propose a confidence measure, Entropy-Difference (ED) for stereo depth estimates and a binary classification method to identify incorrect depths. Experiments on the Middlebury dataset show the effectiveness of our method. Our proposed stereo confidence measure outperforms 17 existing measures in all aspects except occlusion detection. Established metrics such as precision, accuracy, recall, and area-under-curve are used to demonstrate the effectiveness of our method

    Multispectral texture synthesis

    Get PDF
    Synthesizing texture involves the ordering of pixels in a 2D arrangement so as to display certain known spatial correlations, generally as described by a sample texture. In an abstract sense, these pixels could be gray-scale values, RGB color values, or entire spectral curves. The focus of this work is to develop a practical synthesis framework that maintains this abstract view while synthesizing texture with high spectral dimension, effectively achieving spectral invariance. The principle idea is to use a single monochrome texture synthesis step to capture the spatial information in a multispectral texture. The first step is to use a global color space transform to condense the spatial information in a sample texture into a principle luminance channel. Then, a monochrome texture synthesis step generates the corresponding principle band in the synthetic texture. This spatial information is then used to condition the generation of spectral information. A number of variants of this general approach are introduced. The first uses a multiresolution transform to decompose the spatial information in the principle band into an equivalent scale/space representation. This information is encapsulated into a set of low order statistical constraints that are used to iteratively coerce white noise into the desired texture. The residual spectral information is then generated using a non-parametric Markov Ran dom field model (MRF). The remaining variants use a non-parametric MRF to generate the spatial and spectral components simultaneously. In this ap proach, multispectral texture is grown from a seed region by sampling from the set of nearest neighbors in the sample texture as identified by a template matching procedure in the principle band. The effectiveness of both algorithms is demonstrated on a number of texture examples ranging from greyscale to RGB textures, as well as 16, 22, 32 and 63 band spectral images. In addition to the standard visual test that predominates the literature, effort is made to quantify the accuracy of the synthesis using informative and effective metrics. These include first and second order statistical comparisons as well as statistical divergence tests

    A Survey on 3D Ultrasound Reconstruction Techniques

    Get PDF
    This book chapter aims to discuss the 3D ultrasound reconstruction and visualization. First, the various types of 3D ultrasound system are reviewed, such as mechanical, 2D array, position tracking-based freehand, and untracked-based freehand. Second, the 3D ultrasound reconstruction technique or pipeline used by the current existing system, which includes the data acquisition, data preprocessing, reconstruction method and 3D visualization, is discussed. The reconstruction method and 3D visualization will be emphasized. The reconstruction method includes the pixel-based method, volume-based method, and function-based method, accompanied with their benefits and drawbacks. In the 3D visualization, methods such as multiplanar reformatting, volume rendering, and surface rendering are presented. Lastly, its application in the medical field is reviewed as well

    A comparison of hole-filling methods in 3D

    Get PDF
    This paper presents a review of the most relevant current techniques that deal with hole-filling in 3D models. Contrary to earlier reports, which approach mesh repairing in a sparse and global manner, the objective of this review is twofold. First, a specific and comprehensive review of hole-filling techniques (as a relevant part in the field of mesh repairing) is carried out. We present a brief summary of each technique with attention paid to its algorithmic essence, main contributions and limitations. Second, a solid comparison between 34 methods is established. To do this, we define 19 possible meaningful features and properties that can be found in a generic hole-filling process. Then, we use these features to assess the virtues and deficiencies of the method and to build comparative tables. The purpose of this review is to make a comparative hole-filling state-of-the-art available to researchers, showing pros and cons in a common framework.• Ministerio de Economía y Competitividad: Proyecto DPI2013-43344-R (I+D+i) • Gobierno de Castilla-La Mancha: Proyecto PEII-2014-017-PpeerReviewe
    • …
    corecore