23 research outputs found

    On the importance of time-synchronized operations in software-defined electronic and optical networks

    Get PDF
    The utilization of time-synchronized operations (TSO) is gaining interest in the research community on Software-Defined Networking (SDN). This paper discusses TSO applicability in electronic packet and optical networks. In electronic packet networks, the TSO approach has been shown to improve network performance, thanks to timed network updates. In optical networks, this approach enables novel security applications and permits to reduce lightpath disruption time. We finally discuss TSO further potentialities and requirements regarding clock availability in network elements

    Experimental Validation of Time-Synchronized Operations for Software-Defined Elastic Optical Networks

    Get PDF
    Elastic optical networks (EON) have been proposed as a solution to efficiently exploit the spectrum resources in the physical layer of optical networks. Moreover, by centralizing legacy generalized multiprotocol label switching control-plane functionalities and providing a global network view, software-defined networking (SDN) enables advanced network programmability valuable to control and configure the technological breakthroughs of EON. In this paper, we review our recent proposal [Optical Fiber Communication Conf., Los Angeles, California, 2017] of time-synchronized operations (TSO) to minimize disruption time during lightpath reassignment in EON. TSO has been recently standardized in SDN, and here we discuss its implementation using NETCONF and OpenFlow in optical networks. Subsequently, we update our analytical model considering an experimental characterization of the WSS operation time. Then, we extend our previous work with an experimental validation of TSO for lightpath reassignment in a five-node metropolitan optical network test-bed. Results validate the convenience of our TSO-based approach against a traditional asynchronous technique given its reduction of disruption time, while both techniques maintain a similar network performance in terms of optical signal-to-noise ratio and optical power budget

    Control Plane in Software Defined Networks and Stateful Data Planes

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Optical Network Security Management: Requirements, Architecture and Efficient Machine Learning Models for Detection of Evolving Threats [Invited]

    Get PDF
    As the communication infrastructure that sustains critical societal services, optical networks need to function in a secure and agile way. Thus, cognitive and automated security management functionalities are needed, fueled by the proliferating machine learning (ML) techniques and compatible with common network control entities and procedures. Automated management of optical network security requires advancements both in terms of performance and efficiency of ML approaches for security diagnostics, as well as novel management architectures and functionalities. This paper tackles these challenges by proposing a novel functional block called Security Operation Center (SOC), describing its architecture, specifying key requirements on the supported functionalities and providing guidelines on its integration with optical layer controller. Moreover, to boost efficiency of ML-based security diagnostic techniques when processing high-dimensional optical performance monitoring data in the presence of previously unseen physical-layer attacks, we combine unsupervised and semi-supervised learning techniques with three different dimensionality reduction methods and analyze the resulting performance and trade-offs between ML accuracy and run time complexity

    Scalable Physical Layer Security Components for Microservice-Based Optical SDN Controllers

    Get PDF
    We propose and demonstrate a set of microservice-based security components able to perform physical layer security assessment and mitigation in optical networks. Results illustrate the scalability of the attack detection mechanism and the agility in mitigating attacks
    corecore