1,893 research outputs found

    Multigrid waveform relaxation for the time-fractional heat equation

    Get PDF
    In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We develop a parallel-in-time multigrid algorithm based on the waveform relaxation approach, whose application to time-fractional problems seems very natural due to the fact that the fractional derivative at each spatial point depends on the values of the function at this point at all earlier times. Exploiting the Toeplitz-like structure of the coefficient matrix, the proposed multigrid waveform relaxation method has a computational cost of O(NMlog(M))O(N M \log(M)) operations, where MM is the number of time steps and NN is the number of spatial grid points. A semi-algebraic mode analysis is also developed to theoretically confirm the good results obtained. Several numerical experiments, including examples with non-smooth solutions and a nonlinear problem with applications in porous media, are presented

    Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains

    Full text link
    We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In particular, we develop techniques for the treatment of the dense stiffness matrix including the computation of the entries, the efficient assembly and storage of a sparse approximation and the efficient solution of the resulting equations. The main idea consists of generalising proven techniques for the treatment of boundary integral equations to general fractional orders. Importantly, the approximation does not make any strong assumptions on the shape of the underlying domain and does not rely on any special structure of the matrix that could be exploited by fast transforms. We demonstrate the flexibility and performance of this approach in a couple of two-dimensional numerical examples

    A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations

    Full text link
    The pp-step backwards difference formula (BDF) for solving the system of ODEs can result in a kind of all-at-once linear systems, which are solved via the parallel-in-time preconditioned Krylov subspace solvers (see McDonald, Pestana, and Wathen [SIAM J. Sci. Comput., 40(2) (2018): A1012-A1033] and Lin and Ng [arXiv:2002.01108, 17 pages]. However, these studies ignored that the pp-step BDF (p2p\geq 2) is not selfstarting, when they are exploited to solve time-dependent PDEs. In this note, we focus on the 2-step BDF which is often superior to the trapezoidal rule for solving the Riesz fractional diffusion equations, but its resultant all-at-once discretized system is a block triangular Toeplitz system with a low-rank perturbation. Meanwhile, we first give an estimation of the condition number of the all-at-once systems and then adapt the previous work to construct two block circulant (BC) preconditioners. Both the invertibility of these two BC preconditioners and the eigenvalue distributions of preconditioned matrices are discussed in details. The efficient implementation of these BC preconditioners is also presented especially for handling the computation of dense structured Jacobi matrices. Finally, numerical experiments involving both the one- and two-dimensional Riesz fractional diffusion equations are reported to support our theoretical findings.Comment: 18 pages. 2 figures. 6 Table. Tech. Rep.: Institute of Mathematics, Southwestern University of Finance and Economics. Revised-1: refine/shorten the contexts and correct some typos; Revised-2: correct some reference

    A fast implicit difference scheme for solving the generalized time-space fractional diffusion equations with variable coefficients

    Get PDF
    In this paper, we first propose an unconditionally stable implicit difference scheme for solving generalized time-space fractional diffusion equations (GTSFDEs) with variable coefficients. The numerical scheme utilizes the L1L1-type formula for the generalized Caputo fractional derivative in time discretization and the second-order weighted and shifted Gr\"{u}nwald difference (WSGD) formula in spatial discretization, respectively. Theoretical results and numerical tests are conducted to verify the (2γ)(2 - \gamma)-order and 2-order of temporal and spatial convergence with γ(0,1)\gamma\in(0,1) the order of Caputo fractional derivative, respectively. The fast sum-of-exponential approximation of the generalized Caputo fractional derivative and Toeplitz-like coefficient matrices are also developed to accelerate the proposed implicit difference scheme. Numerical experiments show the effectiveness of the proposed numerical scheme and its good potential for large-scale simulation of GTSFDEs.Comment: 23 pages, 10 tables, 1 figure. Make several corrections again and have been submitted to a journal at Sept. 20, 2019. Version 2: Make some necessary corrections and symbols, 13 Jan. 2020. Revised manuscript has been resubmitted to journa
    corecore