29,488 research outputs found

    A Graphical Model Formulation of Collaborative Filtering Neighbourhood Methods with Fast Maximum Entropy Training

    Full text link
    Item neighbourhood methods for collaborative filtering learn a weighted graph over the set of items, where each item is connected to those it is most similar to. The prediction of a user's rating on an item is then given by that rating of neighbouring items, weighted by their similarity. This paper presents a new neighbourhood approach which we call item fields, whereby an undirected graphical model is formed over the item graph. The resulting prediction rule is a simple generalization of the classical approaches, which takes into account non-local information in the graph, allowing its best results to be obtained when using drastically fewer edges than other neighbourhood approaches. A fast approximate maximum entropy training method based on the Bethe approximation is presented, which uses a simple gradient ascent procedure. When using precomputed sufficient statistics on the Movielens datasets, our method is faster than maximum likelihood approaches by two orders of magnitude.Comment: ICML201

    Recommender System Using Collaborative Filtering Algorithm

    Get PDF
    With the vast amount of data that the world has nowadays, institutions are looking for more and more accurate ways of using this data. Companies like Amazon use their huge amounts of data to give recommendations for users. Based on similarities among items, systems can give predictions for a new item’s rating. Recommender systems use the user, item, and ratings information to predict how other users will like a particular item. Recommender systems are now pervasive and seek to make profit out of customers or successfully meet their needs. However, to reach this goal, systems need to parse a lot of data and collect information, sometimes from different resources, and predict how the user will like the product or item. The computation power needed is considerable. Also, companies try to avoid flooding customer mailboxes with hundreds of products each morning, thus they are looking for one email or text that will make the customer look and act. The motivation to do the project comes from my eagerness to learn website design and get a deep understanding of recommender systems. Applying machine learning dynamically is one of the goals that I set for myself and I wanted to go beyond that and verify my result. Thus, I had to use a large dataset to test the algorithm and compare each technique in terms of error rate. My experience with applying collaborative filtering helps me to understand that finding a solution is not enough, but to strive for a fast and ultimate one. In my case, testing my algorithm in a large data set required me to refine the coding strategy of the algorithm many times to speed the process. In this project, I have designed a website that uses different techniques for recommendations. User-based, Item-based, and Model-based approaches of collaborative filtering are what I have used. Every technique has its way of predicting the user rating for a new item based on existing users’ data. To evaluate each method, I used Movie Lens, an external data set of users, items, and ratings, and calculated the error rate using Mean Absolute Error Rate (MAE) and Root Mean Squared Error (RMSE). Finally, each method has its strengths and weaknesses that relate to the domain in which I am applying these methods

    Discrete Factorization Machines for Fast Feature-based Recommendation

    Full text link
    User and item features of side information are crucial for accurate recommendation. However, the large number of feature dimensions, e.g., usually larger than 10^7, results in expensive storage and computational cost. This prohibits fast recommendation especially on mobile applications where the computational resource is very limited. In this paper, we develop a generic feature-based recommendation model, called Discrete Factorization Machine (DFM), for fast and accurate recommendation. DFM binarizes the real-valued model parameters (e.g., float32) of every feature embedding into binary codes (e.g., boolean), and thus supports efficient storage and fast user-item score computation. To avoid the severe quantization loss of the binarization, we propose a convergent updating rule that resolves the challenging discrete optimization of DFM. Through extensive experiments on two real-world datasets, we show that 1) DFM consistently outperforms state-of-the-art binarized recommendation models, and 2) DFM shows very competitive performance compared to its real-valued version (FM), demonstrating the minimized quantization loss. This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201
    • …
    corecore