1,405 research outputs found

    Joint Scattering Environment Sensing and Channel Estimation Based on Non-stationary Markov Random Field

    Full text link
    This paper considers an integrated sensing and communication system, where some radar targets also serve as communication scatterers. A location domain channel modeling method is proposed based on the position of targets and scatterers in the scattering environment, and the resulting radar and communication channels exhibit a two-dimensional (2-D) joint burst sparsity. We propose a joint scattering environment sensing and channel estimation scheme to enhance the target/scatterer localization and channel estimation performance simultaneously, where a spatially non-stationary Markov random field (MRF) model is proposed to capture the 2-D joint burst sparsity. An expectation maximization (EM) based method is designed to solve the joint estimation problem, where the E-step obtains the Bayesian estimation of the radar and communication channels and the M-step automatically learns the dynamic position grid and prior parameters in the MRF. However, the existing sparse Bayesian inference methods used in the E-step involve a high-complexity matrix inverse per iteration. Moreover, due to the complicated non-stationary MRF prior, the complexity of M-step is exponentially large. To address these difficulties, we propose an inverse-free variational Bayesian inference algorithm for the E-step and a low-complexity method based on pseudo-likelihood approximation for the M-step. In the simulations, the proposed scheme can achieve a better performance than the state-of-the-art method while reducing the computational overhead significantly.Comment: 15 pages, 13 figures, submitted to IEEE Transactions on Wireless Communication

    Large-scale Heteroscedastic Regression via Gaussian Process

    Full text link
    Heteroscedastic regression considering the varying noises among observations has many applications in the fields like machine learning and statistics. Here we focus on the heteroscedastic Gaussian process (HGP) regression which integrates the latent function and the noise function together in a unified non-parametric Bayesian framework. Though showing remarkable performance, HGP suffers from the cubic time complexity, which strictly limits its application to big data. To improve the scalability, we first develop a variational sparse inference algorithm, named VSHGP, to handle large-scale datasets. Furthermore, two variants are developed to improve the scalability and capability of VSHGP. The first is stochastic VSHGP (SVSHGP) which derives a factorized evidence lower bound, thus enhancing efficient stochastic variational inference. The second is distributed VSHGP (DVSHGP) which (i) follows the Bayesian committee machine formalism to distribute computations over multiple local VSHGP experts with many inducing points; and (ii) adopts hybrid parameters for experts to guard against over-fitting and capture local variety. The superiority of DVSHGP and SVSHGP as compared to existing scalable heteroscedastic/homoscedastic GPs is then extensively verified on various datasets.Comment: 14 pages, 15 figure
    • …
    corecore