357 research outputs found

    Optimum non linear binary image restoration through linear grey-scale operations

    Get PDF
    Non-linear image processing operators give excellent results in a number of image processing tasks such as restoration and object recognition. However they are frequently excluded from use in solutions because the system designer does not wish to introduce additional hardware or algorithms and because their design can appear to be ad hoc. In practice the median filter is often used though it is rarely optimal. This paper explains how various non-linear image processing operators may be implemented on a basic linear image processing system using only convolution and thresholding operations. The paper is aimed at image processing system developers wishing to include some non-linear processing operators without introducing additional system capabilities such as extra hardware components or software toolboxes. It may also be of benefit to the interested reader wishing to learn more about non-linear operators and alternative methods of design and implementation. The non-linear tools include various components of mathematical morphology, median and weighted median operators and various order statistic filters. As well as describing novel algorithms for implementation within a linear system the paper also explains how the optimum filter parameters may be estimated for a given image processing task. This novel approach is based on the weight monotonic property and is a direct rather than iterated method

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Fast recursive grayscale morphology operators: from the algorithm to the pipeline architecture

    Get PDF
    International audienceThis paper presents a new algorithm for an efficient computation of morphological operations for gray images and its specific hardware. The method is based on a new recursive morphological decomposition method of 8-convex structuring elements by only causal two-pixel structuring elements (2PSE). Whatever the element size, erosion or/and dilation can then be performed during a unique raster-like image scan involving a fixed reduced analysis neighborhood. The resulting process offers low computation complexity combined with easy description of the element form. The dedicated hardware is generic and fully regular, built from elementary interconnected stages. It has been synthesized into an FPGA and achieves high frequency performances for any shape and size of structuring element

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    FPGA implementation and performance comparison of a Bayesian face detection system

    Get PDF
    Face detection has primarily been a software-based effort. A hardware-based approach can provide significant speed-up over its software counterpart. Advances in transistor technology have made it possible to produce larger and faster FPGAs at more affordable prices. Through VHDL and synthesis tools it is possible to rapidly develop a hardware-based solution to face detection on an FPGA. This work analyzes and compares the performance of a feature-invariant face detection method implemented in software and an FPGA. The primary components of the face detector were a Bayesian classifier used to segment the image into skin and nonskin pixels, and a direct least square elliptical fitting technique to determine if the skin region\u27s shape has elliptical characteristics similar to a face. The C++ implementation was benchmarked on several high performance workstations, while the VHDL implementation was synthesized for FPGAs from several Xilinx product lines. The face detector used to compare software and hardware performance had a modest correct detection rate of 48.6% and a false alarm rate of 29.7%. The elliptical-shape of the region was determined to be an inaccurate approach for filtering out non-face skin regions. The software-based face detector was capable of detecting faces within images of approximately 378x567 pixels or less at 20 frames per second on Pentium 4 and Pentium D systems. The FPGA-based implementation was capable of faster detection speeds; a speedup of 3.33 was seen on a Spartan 3 and 4.52 on a Virtex 4. The comparison shows that an FPGA-based face detector could provide a significant increase in computational speed

    FAST IMPLEMENTATION TECHNIQUES OF MULTICHANNEL DIGITAL FILTERS FOR COLOR IMAGE PROCESSING USING MATRIX DECOMPOSITIONS

    Get PDF
    For the processing of color images, multivariable 3-input, 3-output 2-D digital filters are used, considering decomposition in the R, G and B components. Assuming that the three image components are decorrelated, three independent single-input, single-output (SISO) two-dimensional (2-D) digital filters are needed for the processing of each monochromatic image. Additional processing is needed for the correlated noise components in each chan- nel. The requirement of very fast processing dictates the use of special purpose hardware implementations. The VLSI array processors, which are special purpose, locally intercon- nected computing networks, are ideally suited for the fast implementation of digital filters, since they maximize concurrency by exploiting both parallelism and pipelining. In this paper fast implementation architectures of 3-input, 3-output 2-D multi-input digital filters for color image processing that are based on matrix decompositions are presented. The resulting structures are modular, regular, have high inherent parallelism and are easily pipelined, so that they may be implemented via VLSI array processors

    Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems

    Get PDF
    The increasing capacity and capabilities of FPGA devices in recent years provide an attractive option for performance-hungry applications in the image and video processing domain. FPGA devices are often used as implementation platforms for image and video processing algorithms for real-time applications due to their programmable structure that can exploit inherent spatial and temporal parallelism. While performance and area remain as two main design criteria, power consumption has become an important design goal especially for mobile devices. Reduction in power consumption can be achieved by reducing the supply voltage, capacitances, clock frequency and switching activities in a circuit. Switching activities can be reduced by architectural optimization of the processing cores such as adders, multipliers, multiply and accumulators (MACS), etc. This dissertation research focuses on reducing the switching activities in digital circuits by considering data dependencies in bit level, word level and block level neighborhoods in a video frame. The bit level data neighborhood dependency consideration for power reduction is illustrated in the design of pipelined array, Booth and log-based multipliers. For an array multiplier, operands of the multipliers are partitioned into higher and lower parts so that the probability of the higher order parts being zero or one increases. The gating technique for the pipelined approach deactivates part(s) of the multiplier when the above special values are detected. For the Booth multiplier, the partitioning and gating technique is integrated into the Booth recoding scheme. In addition, a delay correction strategy is developed for the Booth multiplier to reduce the switching activities of the sign extension part in the partial products. A novel architecture design for the computation of log and inverse-log functions for the reduction of power consumption in arithmetic circuits is also presented. This also utilizes the proposed partitioning and gating technique for further dynamic power reduction by reducing the switching activities. The word level and block level data dependencies for reducing the dynamic power consumption are illustrated by presenting the design of a 2-D convolution architecture. Here the similarities of the neighboring pixels in window-based operations of image and video processing algorithms are considered for reduced switching activities. A partitioning and detection mechanism is developed to deactivate the parallel architecture for window-based operations if higher order parts of the pixel values are the same. A neighborhood dependent approach (NDA) is incorporated with different window buffering schemes. Consideration of the symmetry property in filter kernels is also applied with the NDA method for further reduction of switching activities. The proposed design methodologies are implemented and evaluated in a FPGA environment. It is observed that the dynamic power consumption in FPGA-based circuit implementations is significantly reduced in bit level, data level and block level architectures when compared to state-of-the-art design techniques. A specific application for the design of a real-time video processing system incorporating the proposed design methodologies for low power consumption is also presented. An image enhancement application is considered and the proposed partitioning and gating, and NDA methods are utilized in the design of the enhancement system. Experimental results show that the proposed multi-level power aware methodology achieves considerable power reduction. Research work is progressing In utilizing the data dependencies in subsequent frames in a video stream for the reduction of circuit switching activities and thereby the dynamic power consumption

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings
    corecore