59 research outputs found

    Memristor Crossbar-based Hardware Implementation of IDS Method

    Full text link
    Ink Drop Spread (IDS) is the engine of Active Learning Method (ALM), which is the methodology of soft computing. IDS, as a pattern-based processing unit, extracts useful information from a system subjected to modeling. In spite of its excellent potential in solving problems such as classification and modeling compared to other soft computing tools, finding its simple and fast hardware implementation is still a challenge. This paper describes a new hardware implementation of IDS method based on the memristor crossbar structure. In addition of simplicity, being completely real-time, having low latency and the ability to continue working after the occurrence of power breakdown are some of the advantages of our proposed circuit.Comment: 16 pages, 13 figures, Submitted to IEEE Transaction on Fuzzy System

    A Contribution Towards Intelligent Autonomous Sensors Based on Perovskite Solar Cells and Ta2O5/ZnO Thin Film Transistors

    Get PDF
    Many broad applications in the field of robotics, brain-machine interfaces, cognitive computing, image and speech processing and wearables require edge devices with very constrained power and hardware requirements that are challenging to realize. This is because these applications require sub-conscious awareness and require to be always “on”, especially when integrated with a sensor node that detects an event in the environment. Present day edge intelligent devices are typically based on hybrid CMOS-memristor arrays that have been so far designed for fast switching, typically in the range of nanoseconds, low energy consumption (typically in nano-Joules), high density and endurance (exceeding 1015 cycles). On the other hand, sensory-processing systems that have the same time constants and dynamics as their input signals, are best placed to learn or extract information from them. To meet this requirement, many applications are implemented using external “delay” in the memristor, in a process which enables each synapse to be modeled as a combination of a temporal delay and a spatial weight parameter. This thesis demonstrates a synaptic thin film transistor capable of inherent logic functions as well as compute-in-memory on similar time scales as biological events. Even beyond a conventional crossbar array architecture, we have relied on new concepts in reservoir computing to demonstrate a delay system reservoir with the highest learning efficiency of 95% reported to date, in comparison to equivalent two terminal memristors, using a single device for the task of image processing. The crux of our findings relied on enhancing our capability to model the unique physics of the device, in the scope of the current thesis, that is not amenable to conventional TCAD simulations. The model provides new insight into the redox characteristics of the gate current and paves way for assessment of device performance in compute-in-memory applications. The diffusion-based mechanism of the device, effectively enables time constants that have potential in applications such as gesture recognition and detection of cardiac arrythmia. The thesis also reports a new orientation of a solution processed perovskite solar cell with an efficiency of 14.9% that is easily integrable into an intelligent sensor node. We examine the influence of the growth orientation on film morphology and solar cell efficiency. Collectively, our work aids the development of more energy-efficient, powerful edge-computing sensor systems for upcoming applications of the IOT

    Design of Neuromemristive Systems for Visual Information Processing

    Get PDF
    Neuromemristive systems (NMSs) are brain-inspired, adaptive computer architectures based on emerging resistive memory technology (memristors). NMSs adopt a mixed-signal design approach with closely-coupled memory and processing, resulting in high area and energy efficiencies. Previous work suggests that NMSs could even supplant conventional architectures in niche application domains such as visual information processing. However, given the infancy of the field, there are still several obstacles impeding the transition of these systems from theory to practice. This dissertation advances the state of NMS research by addressing open design problems spanning circuit, architecture, and system levels. Novel synapse, neuron, and plasticity circuits are designed to reduce NMSs’ area and power consumption by using current-mode design techniques and exploiting device variability. Circuits are designed in a 45 nm CMOS process with memristor models based on multilevel (W/Ag-chalcogenide/W) and bistable (Ag/GeS2/W) device data. Higher-level behavioral, power, area, and variability models are ported into MATLAB to accelerate the overall simulation time. The circuits designed in this work are integrated into neural network architectures for visual information processing tasks, including feature detection, clustering, and classification. Networks in the NMSs are trained with novel stochastic learning algorithms that achieve 3.5 reduction in circuit area, reduced design complexity, and exhibit similar convergence properties compared to the least-mean-squares algorithm. This work also examines the effects of device-level variations on NMS performance, which has received limited attention in previous work. The impact of device variations is reduced with a partial on-chip training methodology that enables NMSs to be configured with relatively sophisticated algorithms (e.g. resilient backpropagation), while maximizing their area-accuracy tradeoff

    An In-Memory Architecture for High-Performance Long-Read Pre-Alignment Filtering

    Full text link
    With the recent move towards sequencing of accurate long reads, finding solutions that support efficient analysis of these reads becomes more necessary. The long execution time required for sequence alignment of long reads negatively affects genomic studies relying on sequence alignment. Although pre-alignment filtering as an extra step before alignment was recently introduced to mitigate sequence alignment for short reads, these filters do not work as efficiently for long reads. Moreover, even with efficient pre-alignment filters, the overall end-to-end (i.e., filtering + original alignment) execution time of alignment for long reads remains high, while the filtering step is now a major portion of the end-to-end execution time. Our paper makes three contributions. First, it identifies data movement of sequences between memory units and computing units as the main source of inefficiency for pre-alignment filters of long reads. This is because although filters reject many of these long sequencing pairs before they get to the alignment stage, they still require a huge cost regarding time and energy consumption for the large data transferred between memory and processor. Second, this paper introduces an adaptation of a short-read pre-alignment filtering algorithm suitable for long reads. We call this LongGeneGuardian. Finally, it presents Filter-Fuse as an architecture that supports LongGeneGuardian inside the memory. FilterFuse exploits the Computation-In-Memory computing paradigm, eliminating the cost of data movement in LongGeneGuardian. Our evaluations show that FilterFuse improves the execution time of filtering by 120.47x for long reads compared to State-of-the-Art (SoTA) filter, SneakySnake. FilterFuse also improves the end-to-end execution time of sequence alignment by up to 49.14x and 5207.63x compared to SneakySnake with SoTA aligner and only SoTA aligner, respectively

    Neuromorphic System Design and Application

    Get PDF
    With the booming of large scale data related applications, cognitive systems that leverage modern data processing technologies, e.g., machine learning and data mining, are widely used in various industry fields. These application bring challenges to conventional computer systems on both semiconductor manufacturing and computing architecture. The invention of neuromorphic computing system (NCS) is inspired by the working mechanism of human-brain. It is a promising architecture to combat the well-known memory bottleneck in Von Neumann architecture. The recent breakthrough on memristor devices and crossbar structure made an important step toward realizing a low-power, small-footprint NCS on-a-chip. However, the currently low manufacturing reliability of nano-devices and circuit level constrains, .e.g., the voltage IR-drop along metal wires and analog signal noise from the peripheral circuits, bring challenges on scalability, precision and robustness of memristor crossbar based NCS. In this dissertation, we quantitatively analyzed the robustness of memristor crossbar based NCS when considering the device process variations, signal fluctuation and IR-drop. Based on our analysis, we will explore deep understanding on hardware training methods, e.g., on-device training and off-device training. Then, new technologies, e.g., noise-eliminating training, variation-aware training and adaptive mapping, specifically designed to improve the training quality on memristor crossbar hardware will be proposed in this dissertation. A digital initialization step for hardware training is also introduced to reduce training time. The circuit level constrains will also limit the scalability of a single memristor crossbar, which will decrease the efficiency of implementation of NCS. We also leverage system reduction/compression techniques to reduce the required crossbar size for certain applications. Besides, running machine learning algorithms on embedded systems bring new security concerns to the service providers and the users. In this dissertation, we will first explore the security concerns by using examples from real applications. These examples will demonstrate how attackers can access confidential user data, replicate a sensitive data processing model without any access to model details and how expose some key features of training data by using the service as a normal user. Based on our understanding of these security concerns, we will use unique property of memristor device to build a secured NCS

    Hybrid 2D–CMOS microchips for memristive applications

    Get PDF
    Ministry of Science and Technology of China (grant nos. 2019YFE0124200 and 2018YFE0100800)National Natural Science Foundation of China (grant no. 61874075)Baseline funding scheme of the King Abdullah University of Science and Technolog

    BOOLEAN AND BRAIN-INSPIRED COMPUTING USING SPIN-TRANSFER TORQUE DEVICES

    Get PDF
    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or ‘spin-neuron’) in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing “human-like” cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching
    • 

    corecore