47 research outputs found

    Wireless Handoff Optimization: A Comparison of IEEE 802.11r and HOKEY

    Get PDF
    Abstract. IEEE 802.11 or Wi-Fi has long been the most widely deployed technology for wireless broadband Internet access, yet it is increasingly facing competition from other technologies such as packet-switched cellular data. End user expectations and demands have grown towards a more mobile and agile network. At one end, users demand more and more mobility and on the other end, they expect a good QoS which is sufficient to meet the needs of VoIP and streaming video. However, as the 4G technologies start knocking at doors, 802.11 is being questioned for its mobility and QoS (Quality of Service). Unnecessary handoffs and reauthentication during handoffs result in higher latencies. Recent research shows that if the handoff latency is high, services like VoIP experience excessive jitter. Bulk of the handoff latency is caused by security mechanisms, such as the 4-way handshake and, in particular, EAP authentication to a remote authentication server. IEEE 802.11r and HandOver KEY (HOKEY) are protocol enhancements that have been introduced to mitigate these challenges and to manage fast and secure handoffs in a seamless manner. 802.11r extends the 802.11 base specification to support fast handoff in the MAC protocol. On the other hand, HOKEY is a suite of protocols standardized by IETF to support fast handoffs. This paper analyzes the applicability of 802.11r and HOKEY solutions to enable fast authentication and fast handoffs. It also presents an overview of the fast handoff solutions proposed in some recent research

    Security in Wireless Local Area Networks (WLANs)

    Get PDF
    Major research domains in the WLAN security include: access control & data frame protection, lightweight authentication and secure handoff. Access control standard like IEEE 802.11i provides flexibility in user authentication but on the other hand fell prey to Denial of Service (DoS) attacks. For Protecting the data communication between two communicating devices—three standard protocols i.e., WEP (Wired Equivalent Privacy), TKIP (Temporal Key Integrity Protocol) and AES-CCMP (Advanced Encryption Standard—Counter mode with CBC-MAC protocol) are used. Out of these, AES-CCMP protocol is secure enough and mostly used in enterprises. In WLAN environment lightweight authentication is an asset, provided it also satisfies other security properties like protecting the authentication stream or token along with securing the transmitted message. CAPWAP (Control and Provisioning of Wireless Access Points), HOKEY (Hand Over Keying) and IEEE 802.11r are major protocols for executing the secure handoff. In WLANs, handoff should not only be performed within time limits as required by the real time applications but should also be used to transfer safely the keying material for further communication. In this chapter, a comparative study of the security mechanisms under the above-mentioned research domains is provided

    Cooperation Between Stations in Wireless Networks

    Get PDF
    In a wireless network, mobile nodes (MNs) repeatedly perform tasks such as layer 2 (L2) handoff, layer 3 (L3) handoff and authentication. These tasks are critical, particularly for real-time applications such as VoIP. We propose a novel approach, namely Cooperative Roaming (CR), in which MNs can collaborate with each other and share useful information about the network in which they move. We show how we can achieve seamless L2 and L3 handoffs regardless of the authentication mechanism used and without any changes to either the infrastructure or the protocol. In particular, we provide a working implementation of CR and show how, with CR, MNs can achieve a total L2+L3 handoff time of less than 16 ms in an open network and of about 21 ms in an IEEE 802.11i network. We consider behaviors typical of IEEE 802.11 networks, although many of the concepts and problems addressed here apply to any kind of mobile network

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    Channel Scanning and Access Point Selection Mechanisms for 802.11 Handoff: A Survey

    Get PDF
    While the cellular technology has been evolving continuously in recent years and client handoffs remain unnoticed, the 802.11 networks still impose an enormous latency issue once the client device decides to roam between the Access Point (AP). This latency is caused by many factors reckoning on scanning the channels and searching for APs with better signal strength. Once data from all the nearby APs has been collected, the client picks the most suitable AP and tries to connect with it. The AP verifies if it has enough capability to serve the client. It also ensures that the client has the required parameters and supported rates to match with the AP. The AP then processes this request, generates a new Association ID and sends it back to the client, thereby granting access to connect. Throughout this re-association process, the client fails to receive or send any data frames and experiences a lag between leaving the old and associating with a new AP. Originally, 802.11 authentication frames were designed for Wired Equivalent Privacy protocol, but later it was found to be insecure and thus got depreciated. Keeping these security aspects concerning shared key authentication in mind, few additional drafts were introduced by IEEE that concerned many key exchanges between the devices. IEEE 802.11r was introduced in 2008 that permits wireless clients to perform faster handoff along with additional data security standards. The key exchange method was redefined and also the new security negotiation protocol started serving wireless devices with a better approach. This enables a client to set up the Quality of Service state and security on an alternative AP before making a transition which ends up in minimal connectivity losses. Although this was an excellent step towards minimizing the service disruption and channel scanning, failure to remain connected with consecutive suitable APs within the minimum time continued to be a challenge. Different manufacturers use their custom-built methodology of handling a client handoff and hence the latency costs differ based on the type of handoff scheme deployed on the device. This thesis focuses on the foremost economical researches throughout recent years which targets minimizing the delays involved with channel scanning and AP selection. A wide sort of enhancements, whether it is on a client device or the AP, has been discussed and compared. Some modifications are associated with enhancing channel scan period or using beacons, and probe requests/responses in an efficient manner. Others concentrate on modifying the device hardware configuration and switching between Network Interfaces. Central controllers are a solution to handoff delays that may track the status of each device within the network and guide them to provide the appropriate Quality of Service to the end-users

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    Roaming in WiFi networks

    Get PDF
    Táto práca sa zoberá problematikou roamingu vo WiFi sieťach. Preberá možnosti z pohľadu 802.11 štandardu. Možnostiach továrenských nastavení výrobkov s rýchlim roamingom od firiem CISCO a MikroTik. Navrhuje meranie a testovane týchto sietí.This work deals with roaming issues in the WiFi network. Takes options from a 802.11 standard view. Factory setting options for fast roaming from CISCO and MikroTik. It proposes to measure and test these networks.
    corecore